Parabolic problems; Finite elements method; Discontinuous Galerkin method
Abstract :
[en] We set an algorithm for the complete discretization of parabolic problems combining the finite element method for the space variables x and the discontinuous Galerkin method for the time t. By using the Legendre's polynomials in t, we reduce the resolution of the system of qN linear equations, where N is the amount of finite element degrees of freedom and q-1 is the degree of the approximations with respect to t, to two inversions of NxN matrices and one evaluation of a NxN matrix polynomial of degree q by a technic of Horner's type. The systematic character of the coefficients allows an algorithm with q as a parameter.
Disciplines :
Mathematics
Author, co-author :
Chevalier, Jacques
Dethier, Bruno
Tossings, Patricia ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mathématiques générales
Language :
French
Title :
Sur la discrétisation totale des problèmes paraboliques
Publication date :
1992
Publisher :
Institut de Mathématique de l'Université de Liège, Liège, Belgium