No document available.
Keywords :
Administration, Oral; Adult; Blood Glucose/metabolism; C-Peptide/blood; Dietary Carbohydrates/metabolism; Exercise; Fatty Acids, Nonesterified/blood; Glucagon/blood; Glucose/administration & dosage/metabolism; Humans; Insulin/blood; Male; Osmolar Concentration; Oxidation-Reduction
Abstract :
[en] The aim of this study was to investigate whether the osmolality of a glucose solution, ingested at the beginning of a prolonged exercise bout, affects exogenous glucose disposal. We investigated the hormonal and metabolic response to a 50-g glucose load dissolved in either 200 (protocol A), 400 (protocol B), or 600 (protocol C) ml of water and given orally 15 min after adaptation to exercise in five healthy male volunteers. Naturally labeled [13C]glucose was used to follow the conversion of the ingested glucose to expired-air CO2. Total carbohydrate oxidation (indirect calorimetry) was similar in the three protocols (A, 237 +/- 20; B, 258 +/- 17; C, 276 +/- 20 g/4 h), as was lipid oxidation (A, 128 +/- 4; B, 132 +/- 15; C, 124 +/- 12 g/4 h). Exogenous glucose oxidation rates were similar under the three experimental conditions, and the total amount of exogenous glucose utilized was slightly, but not significantly, increased with the more diluted solution (A, 42.6 +/- 4.4; B, 43.4 +/- 4.1; C, 48.7 +/- 7.2 g/4 h). The blood glucose response was similar in the three protocols. Thus, within the range investigated, the osmolality of the glucose solution ingested had no significant influence either on its oxidation (which was 86-98% of the load ingested) or on the utilization of endogenous carbohydrate, lipid, or protein stores.
Scopus citations®
without self-citations
13