No full text
Article (Scientific journals)
Amylin/islet amyloid polypeptide: biochemistry, physiology, patho-physiology.
Castillo, M. J.; Scheen, André; Lefebvre, Pierre
1995In Diabète et Métabolisme, 21 (1), p. 3-25
Peer Reviewed verified by ORBi
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Amino Acid Sequence; Amyloid/chemistry/deficiency/genetics/physiology; Animals; Bone and Bones/metabolism; Calcium/metabolism; Cardiovascular Physiological Phenomena; Central Nervous System/physiology; Digestive System Physiological Phenomena; Energy Metabolism/physiology; Humans; Molecular Sequence Data
Abstract :
[en] Amylin is a 37 amino-acid peptide mainly produced by the islet beta-cell. Aggregation of amylin is partly responsible for amyloid formation. Amyloid deposits occur both extracellularly and intracellularly and may contribute to beta-cell degeneration. Amylin is packed in beta-cell granules and cosecreted with insulin in response to the same stimuli but, unlike other beta-cell products, it is produced from specific a gene on chromosome 12. Basal, plasma amylin concentrations are around 5 pM, and increase fourfold after meals or glucose. Higher levels are found in cases of insulin resistance, obesity, gestational diabetes and in some patients with NIDDM. Low or absent levels are found in insulin-dependent diabetic patients. There are similarities between amylin and non beta-cell peptides such as calcitonin gene related peptides (CGRP). They may bind to the same receptor, determine similar post-receptor phenomena and qualitatively similar actions but with different degree of potency. The actions of amylin are multiple and mostly exerted in the regulation of fuel metabolism. In muscle, amylin opposes glycogen synthesis, activates glycogenolysis and glycolysis (increasing lactate production). Consequently, amylin increases lactate output by muscle and increases the plasma lactate concentration. In fasting conditions, this lactate may serve as a gluconeogenic substrate for the liver, contributing to replenish depleted glycogen stores and to increase glucose production. In non-fasting conditions, lactate can be transformed by liver in triglycerides. It is not clear at present whether amylin actions on the liver are direct or mediated by changes in circulating metabolites. A probably indirect effect of amylin in muscle is to decrease insulin- (or glucose)-induced glucose uptake, which may contribute to insulin resistance. Other actions include inhibition of glucose-stimulated insulin secretion and, in general, actions mimicking CGRP effects. Some of these actions are seen at supraphysiological concentrations. The physiopathological consequences of amylin deficiency, or excess are under active by investigated.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Castillo, M. J.
Scheen, André  ;  Université de Liège - ULiège > Département des sciences cliniques > Diabétologie, nutrition et maladie métaboliques - Médecine interne générale
Lefebvre, Pierre ;  Centre Hospitalier Universitaire de Liège - CHU > Diabétologie,nutrition, maladies métaboliques
Language :
English
Title :
Amylin/islet amyloid polypeptide: biochemistry, physiology, patho-physiology.
Publication date :
1995
Journal title :
Diabète et Métabolisme
ISSN :
0338-1684
Publisher :
Masson, Paris, France
Volume :
21
Issue :
1
Pages :
3-25
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 05 June 2009

Statistics


Number of views
80 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
49
Scopus citations®
without self-citations
46

Bibliography


Similar publications



Contact ORBi