[1] S. Grether-Beck, R. Buettner, J. Krutmann, Ultraviolet A radiation-induced expression of human genes: molecular and photobiological mechanisms, Biol. Chem. 378 (1997) 1231-1236.
[2] P.A. Baeuerle, T. Henkel, Function and activation of NF-κB in the immune system, Annu. Rev. Immunol. 12 (1994) 141-179.
[3] U. Siebenlist, G. Franzoso, K. Brown, Structure, regulation and function of NF-κB, Annu. Rev. Cell. Biol. 10 (1994) 405-455.
[4] D. Thanos, T. Maniatis, NF-κB: a lesson in family values, Cell 80 (1995) 529-532.
[5] I.M. Verma, J.K. Stevenson, E.M. Schwarz, D. Van Antwerp, S. Miyamoto, Rel/NF-κB/IκB family: intimate tales of association and dissociation, Genes Dev. 9 (1995) 2723-2735.
[6] M.J. May, S. Ghosh, Signal transduction through NF-κB, Immunol. Today 19 (1998) 80-88.
[7] A.A. Beg, A.S. Baldwin, The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors, Genes Dev. 7 (1993) 2064-2070.
[8] T. Kanno, G. Franzoso, U. Siebenliest, Human T-cell leukemia virus type 1 tax-protein-mediated activation of NF-κB from p100 (NF-kB2)-inhibited cytoplasmic reservoirs, Proc. Natl. Acad. Sci. USA 91 (1994) 12634-12638.
[9] E. Dujardin, G. Bonizzi, A. Bellahcène, V. Castronovo, M.P. Merville, V. Bours, Highly-expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells, Oncogene 11 (1995) 1835-1841.
[10] F.C. Chen, D.-B. Huang, Y.-Q. Chen, G. Ghosh, Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA, Nature 391 (1998) 410-413.
[11] S. Miyamoto, I.M. Verma, Rel/NF-κB/IκB story, Adv. Cancer Res. 66 (1995) 255-292.
[12] T. Hayashi, T. Sekine, T. Okamoto, Identification of a new serine kinase that activates NF-κB by direct phosphorylation, J. Biol. Chem. 268 (1993) 26790-26795.
[13] A. Israel, A role for phosphorylation and degradation in the control of NF-κB activity, Trends Genet. 11 (1995) 203-205.
[14] P.A. Baeuerle, The inducible transcription factor NF-κB-regulation by distinct protein subunits, Biochim. Biophys. Acta 1072 (1991) 63-80.
[15] K. Brown, S. Gersterberger, L. Carlson, G. Franzoso, U. Siebenliestt, Control of IκBα proteolysis by site-specific, signal induced phosphorylation, Science 267 (1995) 1485-1488.
[16] E.B.M. Traenckner, H.L. Pahl, T. Henkel, S. Schmidt, S. Wilk, P.A. Baeuerle, Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli, EMBO J. 14 (1995) 5433-5441.
[17] J.A. DiDonato, F. Mercurio, C. Rosette, J. Wu-Li, H. Suyan, S. Ghosh, M. Karin, Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation, Mol. Cell. Biol. 16 (1996) 1295-1304.
[18] V. Imbert, R.A. Rupec, A. Livolsi, H.L. Pahl, E.B.-M. Traenckner, C. Mueller-Dieckmann, B. Rossi, P. Auberger, P.A. Baeuerle, J.F. Peyron, Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α, Cell 86 (1996) 787-798.
[19] S. Singh, B.G. Darnay, B.B. Aggarwal, Site-specific tyrosine phosphorylation of IκBα negatively regulates its inducible phosphorylation and degradation, J. Biol. Chem. 271 (1996) 31049-31054.
[20] S. Miyamoto, B.J. Seufzer, S.D. Shumway, Novel IκBα proteolytic pathway in WEHI231 immature B cells, Mol. Cell. Biol. 18 (1998) 19-29.
[21] S.-C. Sun, J. Elwood, W.C. Greene, Both amino- and carboxy-terminal sequences within IκBα regulate its inducible degradation, Mol. Cell. Biol. 16 (1996) 1058-1065.
[22] D.J. Van Antwerp, I.M. Verma, Signal-induced degradation of IκBα: association with NF-κB and the PEST sequence in IκBα are not required, Mol. Cell. Biol. 16 (1996) 6037-6045.
[23] A.A. Beg, T.S. Finco, P.V. Nantermet, A.S. Baldwin, Tumor necrosis factor and interleukin 1 lead to phosphorylation and loss of IκBα - a mechanism for NF-κB activation, Mol. Cell. Biol. 13 (1993) 3301-3310.
[24] S.R. Cordle, R. Donald, M.A. Read, J. Hawiger, Liposaccharide induces phosphorylation of MAD3 and activation of C-rel and related NF-κB proteins in human monocytic THP-1 cells, J. Biol. Chem. 268 (1993) 11803-11810.
[25] Z.J. Chen, J. Hagler, J. Palombella, F. Melandri, D. Scherer, D. Ballard, T. Maniatis, Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathways, Genes Dev 9 (1995) 1586-1597.
[26] J.A. DiDonato, M. Hayakawa, D.M. Rothwarf, E. Zandi, M. Karin, A cytokine-responsive IκB kinase that activates the transcription factor NF-κB, Nature 388 (1997) 548-554.
[27] F. Mercurio, H. Zhu, B.W. Murray, A. Shevchenko, B.L. Bennett, J.W. Li, D.B. Young, M.L. Barbosa, M. Mann, IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation, Science 278 (1997) 860-866.
[28] J.D. Woronicz, X. Gao, Z. Cao, M. Rothe, D. Goeddel, IκB kinase-β NF-κB activation and complex formation with IκB kinase-α and NIK, Science 278 (1997) 866-869.
[29] E. Zandi, D.M. Rothwarf, M. Delhasse, M. Hayakawa, M. Karin, The IκB kinase complex (IKK) contains two kinase subunits, IKK-α and IKK-β, necessary for IκB phosphorylation and NF-κB activation, Cell 91 (1997) 243-252.
[30] C.H. Regnier, H.Y. Song, X. Gao, D.V. Goeddel, Z. Cao, M. Rotbe, Identification and characterization of an IκB kinase, Cell 90 (1997) 373-383.
[31] R. Schreck, P. Rieber, P.A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1, EMBO J. 10 (1991) 2247-2258.
[32] R. Schreck, B. Meier, D.N. Mannel, W. Droge, P.A. Baeuerle, Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells, J. Exp. Med. 175 (1992) 1181-1194.
[33] R. Schreck, K. Albermann, P.A. Baeuerle, Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review), Free Rad. Res. Commun. 17 (1992) 221-227.
[34] K.N. Schmidt, P. Amstad, P. Cerutti, P.A. Baeuerle, The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB, Chem. Biol. 2 (1995) 13-22.
[35] C. Sappey, S. Legrand-Poels, M. Best-Belpomme, A. Favier, B. Rentier, J. Piette, Stimulation of glutathione peroxidase activity decreases HIV type 1 activation after oxidative stress, AIDS Res. Hum. Retroviruses 10 (1994) 1451-1461.
[36] C. Kretz-Remy, P. Mehle, M.-E. Mirault, A.P. Arrigo, Inhibition of IκB-alpha phosphorylation and degradation and subsequent NF-κB activation by glutathione peroxidase overexpression, J. Cell. Biol. 133 (1996) 1083-1093.
[37] P. Renard, M.-D. Zachari, C. Bougelet, M.-E. Mirault, G. Haegeman, J. Remacle, M. Raes, Effects of antioxidant enzymes modulations on interleukin-1-induced NF-kB activation, Biochem. Pharmacol. 53 (1997) 149-160.
[38] M.A. Warso, W.E. Lands, Presence of lipid hydroperoxide in human plasma, J. Clin. Invest. 75 (1985) 667-671.
[39] F. Weitzel, A. Wendel, Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone, J. Biol. Chem. 268 (1993) 6288-6292.
[40] K. Schnurr, J. Belkner, F. Ursini, T. Schewe, H. Kühn, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products, J. Biol. Chem. 271 (1996) 4653-4658.
[41] H. Schenk, M. Klein, W. Erdbürger, W. Dröge, K. Schultze-Osthoff, Distinct effects of thioredoxin and other antioxidants on the activation of NF-κB and AP-1, Proc. Natl. Acad. Sci. USA. 91 (1994) 1672-1676.
[42] T. Hayashi, Y. Ueno, T. Okamoto, Oxidoreductive regulation of NF-κB. Involvement of a cellular reducing catalyst thioredoxin, J. Biol. Chem. 268 (1993) 11380-11388.
[43] S. Legrand-Poels, M. Hoebeke, D. Vaira, B. Rentier, J. Piette, HIV-1 promoter activation following an oxidative stress mediated by singlet oxygen, J. Photochem. Photobiol. B: Biol. 17 (1993) 229-237.
[44] J. Piette, M.P. Merville, J. Decuyper, Damages induced in nucleic acids by photosensitization, Photochem. Photobiol. 44 (1985) 793-802.
[45] S. Legrand-Poels, V. Bours, B. Piret, M. Pflaum, B. Epe, B. Rentier, J. Piette, Transcription factor NF-κB is activated by photosensitization generating oxidative DNA damages, J. Biol. Chem. 270 (1995) 6925-6934.
[46] B. Piret, S. Legrand-Poels, C. Sappey, J. Piette, NF-κB transcription factor and human immunodeficiency virus type 1 (HIV-1) activation by methylene blue photosensitization, Eur. J. Biochem. 228 (1995) 447-455.
[48] J.M. Matroule, J. Piette (1998) in preparation.
[49] V.R. Baichal, P.A. Baeuerle, Apoptosis: activate NF-κB or die, Current Biology 7 (1997) R94-R96.
[50] I.B. Weinstein, The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment, Cancer Res. 48 (1988) 4135-4143.
[51] P. Herrlich, H. Ponta, H.J. Rahmsdorf, DNA-damage induced gene expression: signal transduction and relation to growth factor signaling, Rev. Physiol. Biochem. Pharmacol. 119 (1992) 187-223.
[52] Y. Devary, R.A. Gottlieb, T. Smeal, M. Karin, The mammalian ultraviolet response is triggered by activation of src tyrosine kinases, Cell 71 (1992) 1081-1112.
[53] C. Sachenmaier, A. Rahler-Pohl, A. Müller, P. Herrlich, H.J. Rahmsdorf, Damage to DNA by UV light and activation of transcription factors, Biochem. Pharmacol. 47 (1994) 129-136.
[54] P. Herrlich, H.J. Rahmsdorf, Transcriptional and post-transcriptional responses to DNA-damaging agents, Curr. Opinion Cell. Biol. 6 (1994) 425-431.
[55] K. Bender, C. Blattner, A. Knebel, M. Iordanov, P. Herrlich, H.J. Rahmsdorf, UV-induced signal transduction, J. Photochem. Photobiol. B: Biol. 37 (1997) 1-17.
[56] E. Friedberg, G. Walker, W. Siede, DNA repair and Mutagenesis, ASM Press, Washington, DC, USA, 1995.
[57] A.D. Pearce, S.A. Gakell, R. Marks, Epidermal changes in human skin following irradiation with either UV-B and UV-A, J. Invest. Dermatol. 88 (1987) 83-87.
[58] J.W. Little, D.W. Mount, The SOS regulatory system of Escherichia coli, Cell 29 (1982) 11-22.
[59] P. Herrlich, C. Sacchsenmaier, A. Radler-Pohl, S. Gebel, C. Blattner, H.J. Rahmsdorf, The mammalian UV response (mechanism of DNA damage induced gene expression), in: G. Weber (Ed.), Advances in Enzyme Regulation, vol. 34, Pergamon, Oxford, 1994, pp. 381-395.
[60] N.J. Holbrook, A.J. Fornace, Response to adversity: molecular control of gene activation following genotoxic stress, New Biol. 3 (1991) 825-833.
[61] A.P. Pentland, Signal transduction mechanisms in photocarcinogenesis, Photochem. Photobiol. 63 (1996) 379-380.
[62] R.M. Tyrrell, Oxidant, antioxidant status and photocarcinogenesis: the role of gene activation, Photochem. Photobiol. 63 (1996) 380-383.
[64] S. Mai, B. Stein, S. van den Berg, B. Kaina, C. Lücke-Huhle, H. Ponta, H.J. Rahmsdorf, M. Kraemer, S. Gebel, P. Herrlich, Mechanisms of the ultraviolet response in mammalian cells, J. Cell. Science 94 (1989) 609-615.
[65] B. Stein, M. Krämer, H.J. Rahmsdorf, H. Ponta, P. Herrlich, UV-induced transcription from the human immunodeficiency virus type 1 (HTV-1) long terminal repeat and UV-induced secretion of an extracellular factor that induces HIV-1 transcription in nonirradiated cells, J. Virol. 63 (1989) 4540-4544.
[66] D.B. Yarosh, L. Alas, J. Kibitel, A. O'Connor, F. Carrier, A.J. Fornace, Cyclobutane pyrimidine dimers in UV-DNA induce release of soluble mediators that activate the human immunodeficiency virus promoter, J. Invest. Dermatol. 100 (1993) 790-794.
[67] K. Valerie, M. Rosenberg, Chromatin structure implicated in activation of HIV-1 gene expression by ultraviolet light, New Biol. 2 (1990) 712-718.
[68] K. Valerie, A. Singhal, J.C. Kirckham, W.S. Laster, M. Rosenberg, Activation of human immunodeficiency virus gene expression by ultraviolet light in stably transfected human cells does not require the enhancer element, Biochemistry 34 (1995) 15760-15767.
[69] Y. Devary, C. Rosette, J.A. DiDonato, M. Karin, NF-κB activation by ultraviolet light does not depend on a nuclear signal, Science 261 (1993) 1442-1445.
[70] M.M. Simon, Y. Aragane, A. Schwarz, T.A. Luget, T. Schwarz, UV-B light induces nuclear factor κB (NF-κB) activity independently from chromosomal DNA damage in cell-free cytosolic extracts, J. Invest. Dermatol. 102 (1993) 422-427.
[71] D. Tobin, M. Van Hogerlinden, R. Toftgard, UVB-induced association of tumor necrosis factor (TNF) receptor 1/TNF receptor-associated factor-2 mediates activation of Rel proteins, Proc. Natl. Acad. Sci USA 95 (1998) 565-569.
[72] M. Kripke, P. Cox, L. Alas, D. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice, Proc. Natl. Acad. Sci. USA 89 (1992) 7516.
[73] P. Wolf, D. Yarosh, M. Kripke, Effects of sunscreens and a DNA excision repair enzyme on ultraviolet radiation-induced inflammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice, J. Invest. Dermatol. 101 (1993) 523-527.
[74] A. O'Connor, C. Nishigori, D. Yarosh, L. Alas, J. Kibitel, L. Burley, P. Cox, C. Bucana, S. Ullrich, M. Kripke, DNA double stranded breaks in epidermal cells cause immune suppression in vivo and cytokine production in vitro, J. Immunol. 157 (1996) 271-278.
[75] M.A. Pathak, M.D. Carbonare, Reactive oxygen species in photoaging and biochemical studies in the amelioration of photoaging changes, in: F. Urbach (Ed.), Biological Responses to Ultraviolet A Irradiation, Valdenmar, KS, 1992, pp. 189-207.
[76] R.M. Tyrrell, Activation of mammalian gene expression by the UV component of sunlight: from models to reality, Bioessays 18 (1996) 139-148.
[77] G.T. Vile, R.M. Tyrrell, UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts id dependent on iron and singlet oxygen, Free Rad. Biol. Med. 18 (1995) 721-730.
[78] S. Basu-Modak, P. Lüscher, R.M. Tyrrell, Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene, Free Rad. Biol. Med. 20 (1996) 887-897.
[79] G.F. Vile, A. Tanew-Iliitschew, R.M. Tyrrell, Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation, Photochem. Photobiol. 62 (1995) 436-468.
[80] O.S. Reelfs, R.M. Tyrrell, Nuclear factor κB activation by UVA radiation, 6th Congress Eur. Soc. Photobiology, 1995, p. 103.