Iterating Transducers in the Large *
(extended abstract)

Bernard Boigelot, Axel Legay, and Pierre Wolper

Université de Liège,
Institut Montefiore, B28,
4000 Liège, Belgium
{boigelot,legay,pw}@montefiore.ulg.ac.be,
http://www.montefiore.ulg.ac.be/~{boigelot,legay,pw}/

Abstract. Checking infinite-state systems is frequently done by encoding infinite sets of states as regular languages. Computing such a regular representation of, say, the reachable set of states of a system requires acceleration techniques that can finitely compute the effect of an unbounded number of transitions. Among the acceleration techniques that have been proposed, one finds both specific and generic techniques. Specific techniques exploit the particular type of system being analyzed, e.g. a system manipulating queues or integers, whereas generic techniques only assume that the transition relation is represented by a finite-state transducer, which has to be iterated. In this paper, we investigate the possibility of using generic techniques in cases where only specific techniques have been exploited so far. Finding that existing generic techniques are often not applicable in cases easily handled by specific techniques, we have developed a new approach to iterating transducers. This new approach builds on earlier work, but exploits a number of new conceptual and algorithmic ideas, often induced with the help of experiments, that give it a broad scope, as well as good performance.

1 Introduction

If one surveys much of the recent work devoted to the algorithmic verification of infinite-state systems, it quickly appears that regular languages have emerged as a unifying representation formalism for the sets of states of such systems. Indeed, regular languages described by finite automata are a convenient to manipulate, and already quite expressive formalism that can naturally capture infinite sets. Regular sets have been used in the context of infinite sets of states due to unbounded data (e.g. [BG96,FWW97,BW02]) as well as in the context of parametric systems (e.g. [KMM+97,PS00]). Of course, whether regular of not, an infinite set of states cannot be computed enumeratively in a finite amount of time. There is thus a need to find techniques for finitely computing the

* This work was partially funded by a grant of the “Communauté française de Belgique - Direction de la recherche scientifique - Actions de recherche concertées” and by the European IST-FET project ADVANCE (IST-1999-29082).
effect of an unbounded number of transitions. Such techniques can be domain specific or generic. Domain specific results were, for instance, obtained for queues in [BG96,BH97], for integers and reals in [Boi99,BW02], for pushdown system in [FWW97,BEM97], and for lossy channels in [AJ96,ABJ98].

Generic techniques appeared in the context of the verification of parametric systems. The idea used there is that a configuration being a word, a transition relation is a relation on words, or equivalently a language of pairs of words. If this language is regular, it can be represented by a finite state automaton, more specifically a finite-state transducer, and the problem then becomes the one of iterating such a transducer. Finite-state transducers are quite powerful (the transition relation of a Turing machine can be modelled by a finite-state transducer), the flip side of the coin being that the iteration of such a transducer is neither always computable, nor regular. Nevertheless, there are a number of practically relevant cases in which the iteration of finite-state transducers can be computed and remains finite-state. Identifying such cases and developing (partial) algorithms for iterating finite-state transducers has been the topic, referred to as “regular model checking”, of a series of recent papers [BJNT00,JN00,Tou01,DLS01,AJNd02].

The question that initiated the work reported in this paper is, whether the generic techniques for iterating transducers could be fruitfully applied in cases in which domain specific techniques had been exclusively used so far. In particular, our goal was to iterate finite-state transducers representing arithmetic relations (see [BW02] for a survey). Beyond mere curiosity, the motivation was to be able to iterate relations that are not in the form required by the domain specific results, for instance disjunctive relations. Initial results were very disappointing: the transducer for an arithmetic relation as simple as \((x, x + 1)\) could not be iterated by existing generic techniques. However, looking for the roots of this impossibility through a mix of experiments and theoretical work, and taking a pragmatic approach to solving the problems discovered, we were able to develop an approach to iterating transducers that easily handles arithmetic relations, as well as many other cases. Interestingly, it is by using a tool for manipulating automata (LASH [LASH]), looking at examples beyond the reach of manual simulation, and testing various algorithms that the right intuitions, later to be validated by theoretical arguments, were developed. Implementation was thus not an afterthought, but a central part of our research process.

The general approach that has been taken is similar to the one of [Tou01] in the sense that, starting with a transducer \(T\), we compute powers \(T^i\) of \(T\) and attempt to generalize the sequence of transducers obtained in order to capture its infinite union. This is done by comparing successive powers of \(T\) and attempting to characterize the difference between powers of \(T\) as a set of states and transitions that are added. If this set of added states, or increment, is always the same, it can be inserted into a loop in order to capture all powers of \(T\). However, for arithmetic transducers comparing \(T^i\) with \(T^{i+1}\) did not yield an increment that could be repeated, though comparing \(T^2\) with \(T^{2+1}\) did. So, a first idea we used is not to always compare \(T^i\) and \(T^{i+1}\), but to extract a
sequence of samples from the sequence of powers of the transducer, and work with this sequence of samples. Given the binary encoding used for representing arithmetic relations, sampling at powers of 2 works well in this case, but the sampling approach is general and different sample sequences can be used in other cases. Now, if we only consider sample powers T^{i_k} of the transducers and compute $\bigcup_k T^{i_k}$, this is not necessarily equivalent to computing $\bigcup_i T^i$. Fortunately, this problem is easily solved by considering the reflexive transducer, i.e. $T_0 = T \cup T_I$ where T_I is the identity transducer, in which case working with an infinite subsequence of samples is sufficient. Finally, for arithmetic transducers, we used the fact that the sequence T_0^2 can efficiently be computed by successive squaring.

To facilitate the comparison of elements of a sequence of transducers, we work with transducers normalized as reduced deterministic automata. Identifying common parts of successive transducers then amounts to finding isomorphic parts which, given that we are dealing with reduced deterministic automata, can be done efficiently. Working with reduced deterministic automata has advantages, but at the cost of frequently applying expensive determinization procedures. Indeed, during our first experiments, the determinization cost quickly became prohibitive, even though the resulting automata were not excessively large. A closer look showed that this was linked to the fact that the subset construction was manipulating large, but apparently redundant, sets of states. This redundancy was pinpointed to the fact that, in the automata to be determinized, there were frequent inclusion relations between the languages accepted from different states. Formally, there is a partial-order relation on the states of the automaton, a state s_1 being greater than a state s_2 (we say s_1 dominates s_2), if the language accepted from s_1 includes the language accepted from s_2. Thus, when applying the subset construction, dominated states can always be eliminated from the sets that are generated. Of course, one needs the dominance relation to apply this but, exploiting the specifics of the context in which determinization is applied, we were able to develop a simple procedure that computes a safe approximation of the dominance relation in time quadratic in the size of the automaton to be determinized.

Once the automata in the sequence being considered are constructed and compared, and that an increment corresponding to the difference between successive elements has been identified, the next step is to allow this increment to be repeated an arbitrary number of times by incorporating it into a loop. There are some technical issues about how to do this, but no major difficulty. Once the resulting “extrapolated” transducer has been obtained, one still needs to check that the applied extrapolation is safe (contains all elements of the sequence) and is precise (contains no more). An easy to check sufficient condition for the extrapolation to be safe is that it remains unchanged when being composed with itself. Checking preciseness is more delicate, but we have developed a procedure that embodies a sufficient criterion for doing so. The idea is to check that any behavior of the transducer with a given number k of copies of the increment, can be obtained by composing transducers with less than k copies of the increment.
This is done by augmenting the transducers to be checked with counters and proving that one can restrict these counters to a finite range, hence allowing finite-state techniques to be used.

In our experiments, we were able to iterate a variety of arithmetic transducers. We were also successful on disjunctive relations that could not be handled by earlier specific techniques. Furthermore, to test our technique in other contexts, we successfully applied it to examples of parametric systems and to the analysis of a Petri net.

2 Transducers, arithmetic transducers and their iteration

The underlying problem we are considering is reachability analysis for an infinite-state system characterized by a transition relation R. Our goal is thus to compute the closure $R^* = \bigcup_{i \geq 0} R^i$ of R. In what follows, it will be convenient to also consider the reflexive closure of R, i.e., $R \cup I$ where I is the identity relation, which will be denoted by R_0; clearly $R^* = R_0^*$.

We will work in the context of regular model checking [BJNT00], in which R is defined over the set of finite words constructed from an alphabet Σ, is regular and is length preserving (i.e., if $(w, w') \in R$, then $|w| = |w'|$). In this case, R can be defined by a finite automaton over the alphabet $\Sigma \times \Sigma$. Such an automaton is called a transducer and is defined by a tuple $T = (Q, \Sigma \times \Sigma, q_0, \delta, F)$ where Q is the set of states, $q_0 \in Q$ the initial state, $\delta : Q \times (\Sigma \times \Sigma) \to 2^Q$ the transition function ($\delta : Q \times (\Sigma \times \Sigma) \to 2^Q$ if the automaton is deterministic), and $F \subseteq Q$ is the set of accepting states.

As it has been shown in earlier work [KMM+97,PS00,BJNT00,JN00,Tou01] [DLS01,AJNd02] finite-state transducers can represent the transition relation of parametric systems. Using the encoding of integers by words adopted in [Boi99], finite-state transducers can represent all Presburger arithmetic definable relations plus some base-dependent relations [BHMV94].

If relations R_1 and R_2 are respectively represented by transducers $T_1 = (Q_1, \Sigma \times \Sigma, q_{01}, \delta_1, F_1)$ and $T_2 = (Q_2, \Sigma \times \Sigma, q_{02}, \delta_2, F_2)$, the transducer $T_{12} = T_2 \circ T_1$ representing the composition $R_2 \circ R_1$ of R_1 and R_2 is easily computed as $T_{12} = (Q_1 \times Q_2, \Sigma \times \Sigma, (q_{01}, q_{02}), \delta_{12}, F_1 \times F_2)$, where $\delta_{12}((q_1, q_2), (a, b)) = \{ (q'_1, q'_2) | (\exists c \in \Sigma)((q'_1 \in \delta_1(q_1, (a, c))) \text{ and } (q'_2 \in \delta_2(q_2, (c, b)))) \}$. Note that even if T_1 and T_2 are deterministic w.r.t. $\Sigma \times \Sigma$, T_{12} can be nondeterministic.

To compute the closure R^* of a relation represented by a transducer T, we need to compute $\bigcup_{j \geq 0} T^j$, which is a priori an infinite computation and hence we need a speed up technique. In order to develop such a technique, we will consider the reflexive closure R_0 of R and use the following result.

Lemma 1. If R_0 is a reflexive relation and $s = s_1, s_2, \ldots$ is an infinite subsequence of the natural numbers then, $\bigcup_{i \geq 0} R_0^i = \bigcup_{i \geq 0} R_0^{s_i}$.

The lemma follows directly from the fact that for any $i \geq 0$, there is an $s_k \in s$ such that $s_k > i$ and that, since R_0 is reflexive, $(\forall j \leq i)(R_0^j \subseteq R_0^i)$.
Thus, if we use the transducer T_0 corresponding to the reflexive relation R_0, it is sufficient to compute $\bigcup_{k \geq 0} R_0^k$ for an infinite sequence $s = s_1, s_2, \ldots$ of “sample points”. Note that when the sampling sequence consists of powers of 2, the sequence of transducers $T_0^{2^k}$ can be efficiently computed by using the fact that $T_0^{2^{k+1}} = T_0^{2^k} \circ T_0^{2^k}$.

3 Detecting increments

Consider a reflexive transducer T_0 and a sequence s_1, s_2, \ldots of sampling points. Our goal is to determine whether for each $i > 0$, the transducer $T_0^{s_i+1}$ differs from T_0^s by some additional constant finite-state structure. One cannot however hope to check explicitly such a property among an infinite number of sampled transducers. Our strategy consists in comparing a finite number of successive transducers until either a suitable increment can be guessed, or the procedure cannot be carried on further.

For each $i > 0$, let $T_0^{s_i} = (Q^{s_i}, \Sigma \times \Sigma, q_0^{s_i}, \delta^{s_i}, F^{s_i})$. We assume that these transducers are deterministic w.r.t. $\Sigma \times \Sigma$ and minimal. To identify common parts between two successive transducers $T_0^{s_i}$ and $T_0^{s_{i+1}}$ we first look for states of $T_0^{s_i}$ and $T_0^{s_{i+1}}$ from which identical languages are accepted. Precisely, we want to construct a relation $E_{s_i} \subseteq Q^{s_i} \times Q^{s_{i+1}}$ such that $(q, q') \in E_{s_i}$ iff the language accepted from q in $T_0^{s_i}$ is identical to the language accepted from q' in $T_0^{s_{i+1}}$. Since we are dealing with minimized deterministic transducers, the forwards equivalence E_{s_i} is one-to-one (though not total) and can easily be computed by partitioning the states of the joint automaton $(Q^{s_i} \cup Q^{s_{i+1}}, \Sigma \times \Sigma, q_0^{s_i}, \delta^{s_i} \cup \delta^{s_{i+1}}, F^{s_i} \cup F^{s_{i+1}})$ according to their accepted language. This operation is easily carried out by Hopcroft’s finite-state minimization procedure [Hop71]. Note that because the automata are reduced deterministic, the parts of $T_0^{s_i}$ and $T_0^{s_{i+1}}$ linked by E_{s_i} are isomorphic, incoming transitions being ignored.

Next, we search for states of $T_0^{s_i}$ and $T_0^{s_{i+1}}$ that are reachable from the initial state by identical languages. Precisely, we want to construct a relation $E_{b_i} \subseteq Q^{s_i} \times Q^{s_{i+1}}$ such that $(q, q') \in E_{b_i}$ iff the language accepted in $T_0^{s_i}$ when q is taken to be the unique accepting state is identical to the language accepted in $T_0^{s_{i+1}}$ when q' is taken to be the unique accepting state. Since $T_0^{s_i}$ and $T_0^{s_{i+1}}$ are deterministic and minimal, the backwards equivalence E_{b_i} can be computed by forward propagation, starting from the pair $(q_0^{s_i}, q_0^{s_{i+1}})$ and exploring the parts of the transition graphs of $T_0^{s_i}$ and $T_0^{s_{i+1}}$ that are isomorphic to each other, if transitions leaving these parts are ignored.

Note that taking into account the reduced deterministic nature of the automata we are considering, the relations E_{s_i} and E_{b_i} loosely correspond to the forwards and backwards bisimulations used in [DLS01,AJNd02].

We are now able to define our notion of finite-state “increment” between two successive transducers, in terms of the relations E_{s_i} and E_{b_i}.
Definition 1. The transducer $T_0^{s_{i+1}}$ is incrementally larger than $T_0^{s_i}$ if the relations $E_f^{s_i}$ and $E_b^{s_i}$ cover all the states of $T_0^{s_i}$. In other words, for each $q \in Q^{s_i}$, there must exist $q' \in Q^{s_{i+1}}$ such that $(q, q') \in E_f^{s_i} \cup E_b^{s_i}$.

Definition 2. If $T_0^{s_{i+1}}$ is incrementally larger than $T_0^{s_i}$, then the set $Q^{s_{i+1}}$ can be partitioned into $\{Q_f^{s_i}, Q_b^{s_i}\}$, such that

- The set $Q_f^{s_i}$ contains the states q covered by $E_f^{s_i}$, i.e., for which there exists q' such that $(q, q') \in E_f^{s_i}$;
- The set $Q_b^{s_i}$ contains the remaining states\(^1\) of Q^{s_i}.

The set $Q^{s_{i+1}}$ can now be partitioned into $\{Q_f^{s_{i+1}}, Q_b^{s_{i+1}}\}$, where

- The head part $Q_f^{s_{i+1}}$ is the image by $E_f^{s_i}$ of the set $Q_f^{s_i}$;
- The tail part $Q_b^{s_{i+1}}$ is the image by $E_b^{s_i}$ of the set $Q_b^{s_i}$, dismissing the states that belong to $Q_f^{s_{i+1}}$ (our intention is to have an unmodified head part);
- The increment $Q_b^{s_{i+1}}$ contains the states that do not belong to either $Q_f^{s_{i+1}}$ or $Q_b^{s_{i+1}}$.

These definitions are illustrated in the first two lines of Figure 1. Note that given the definition used, the transitions between the head part, increment and tail part must necessarily be in the direction shown in the figure.

Our expectation is that when moving from one transducer to the next in the sequence, the increment will always be the same. We formalize this by defining the incremental growth of a sequence of transducers.

Definition 3. The sequence of sampled transducers $T_0^{s_i}, T_0^{s_{i+1}}, \ldots, T_0^{s_{i+k}}$ grows incrementally if

- for each $j \in [0, k - 1]$, $T_0^{s_{i+j+1}}$ is incrementally larger than $T_0^{s_{i+j}}$;
- for each $j \in [1, k - 1]$, the increment $Q_b^{s_{i+j+1}}$ is the image by $E_b^{s_{i+j}}$ of the increment $Q_b^{s_{i+j}}$.

Consider a sequence $T_0^{s_i}, T_0^{s_{i+1}}, \ldots, T_0^{s_{i+k}}$ that grows incrementally. The tail part $Q_b^{s_{i+j}}$ of $T_0^{s_{i+j}}$, $j \in [2, \ldots, k]$, will then consist of $j - 1$ copies of the increment plus a part that we will name the tail-end part. Precisely, $Q_b^{s_{i+j}}$ can be partitioned into $\{Q_{I_1}, Q_{I_2}^{s_{i+j}}, \ldots, Q_{I_{j-1}}^{s_{i+j}}, Q_{T_{I_j}}^{s_{i+j}}\}$, where

- for each $\ell \in [1, \ldots, j - 1]$, the tail increment $Q_{I_{\ell}}^{s_{i+j}}$ is the image by the relation $E_f^{s_{i+j-\ell}} \circ E_f^{s_{i+j-2-\ell}} \circ \cdots \circ E_f^{s_{i+j-j}}$ of the “head” increment $Q_{I_{\ell}}^{s_{i+j}}$; where “\circ” denotes the composition of relations;
- the tail-end set $Q_{T_{I_j}}^{s_{i+j}}$ contains the remaining elements of $Q_{T_{I_j}}^{s_{i+j}}$.

The situation is illustrated in Figure 1.

\(^1\) Definition 1 implies that these states must therefore be covered by $E_f^{s_i}$; the fact that states covered both by $E_f^{s_i}$ and $E_f^{s_i}$ are placed in $Q_f^{s_i}$ is arbitrary, its consequence is that when successive transducers are compared - see below - the part matched to $Q_f^{s_i}$, rather than the part matched to $Q_b^{s_i}$ will grow.
Fig. 1. Incrementally-growing sequence of transducers.

Focusing on the last transducer T_s^{i+k} in a sequence of incrementally growing transducers, its head increment Q_s^{i+k} and all the tail increments $Q_s^{i+\ell}$, $\ell \in [1,k-1]$ appearing in its tail part Q_s^{i+k} are images of the increment Q_s^{i+1} by a combination of forwards and backwards equivalences. Indeed, by Definition 3, each tail increment is the image of a previous increment by a composition of forwards equivalences, and each head increment is the image of the previous one by a backwards equivalence. Thus, the transition graphs internal to all increments are isomorphic to that of Q_s^{i+1}, and hence are isomorphic to each other.

Our intention is to extrapolate the transducer T_s^{i+k} by adding more increments, following a regular pattern. In order to do this, we need to compare the transitions leaving different increments. We use the following definition.

Definition 4. Let T_s^{i+k} be the last transducer of an incrementally growing sequence, let $Q_s^{i+1}, \ldots, Q_s^{i+k}$ be the isomorphic increments detected within T_s^{i+k}, and let $Q_{T_f}^{i+k}$ be its “tail end” set. Then, an increment $Q_{I_s}^{i+k}$ is said to be communication equivalent to an increment $Q_{I_s}^{i+k}$ iff, for each pair of corresponding states (q, q'), $q \in Q_{I_s}^{i+k}$ and $q' \in Q_{I_s}^{i+k}$, and $a \in \Sigma \times \Sigma$, we have that, either

- $\delta(q,a) \in Q_{I_s}^{i+k}$ and $\delta(q',a) \in Q_{I_s}^{i+k}$, hence leading to corresponding states by the existing isomorphism,
- $\delta(q,a)$ and $\delta(q',a)$ are both undefined,
– \(\delta(q,a) \) and \(\delta(q',a) \) both lead to the same state of the tail end \(Q_{T_f}^{k+i} \), or
– there exists some \(\gamma \) such that \(\delta(q,a) \) and \(\delta(q',a) \) lead to corresponding states of respectively \(Q_{I_k+i}^{k+i} \) and \(Q_{I_{k+i}}^{j+i+\gamma} \).

In order to extrapolate \(T_0^{k+i} \), we simply insert extra increments between the head part of \(T_0^{k+i} \) and its head increment \(Q_{I_k+i}^{k+i} \), and define the transitions leaving them in order to make these extra increments communication equivalent to \(Q_{I_k+i}^{k+i} \). Of course, before doing so, it is heuristically sound to check that a sufficiently long prefix of the increments of \(T_0^{k+i} \) are communication equivalent with each other.

4 Extrapolating sequences of transducers and correctness

Consider a transducer \(T_{e_0} \) to which extrapolation is going to be applied. The state set of this transducer can be decomposed in a head part \(Q_{H} \), a series of \(k \) increments \(Q_{I_0}, \ldots, Q_{I_{k-1}} \) and a tail end part \(Q_{T_f} \). Repeatedly adding extra increments as described at the end of the previous section yields a series of extrapolated transducers \(T_{e_1}, T_{e_2}, \ldots \). Our goal is to build a single transducer that captures the behaviors of the transducers in this sequence, i.e. a transducer \(T_{e_*} = \bigcup_{i \geq 0} T_{e_i} \). The transducer \(T_{e_*} \) can simply be built from \(T_{e_0} \) by adding transitions according to the following rule.

For each state \(q \in Q_{I_0} \cup Q_{H} \) and \(a \in \Sigma \times \Sigma \), if \(\delta(q,a) \) leads to a state \(q' \) in an increment \(Q_{I_j} \), \(1 \leq j \leq k \), then add transitions from \(q \) labelled by \(a \) to the state corresponding to \(q' \) (by the increment isomorphism) in each of the increments \(Q_{I_\ell} \) with \(0 \leq \ell < j \).

The added transitions, which include loops (transitions to \(Q_{I_0}^{e_i} \) itself) allow \(T_{e_*} \) to simulate the computations of any of the \(T_{e_i}, i \geq 0 \). Conversely, it is fairly easy to see all computations generated using the added transitions correspond to a computation of some \(T_{e_i} \). Note that the addition of transitions yields a nondeterministic transducer, which needs to be determined and reduced to be in canonical form.

Having thus constructed an extrapolated transducer \(T_{e_*} \), it remains to check whether this transducer accurately corresponds to what we really intend to compute, i.e. \(\bigcup_{i \geq 0} T_i \). This is done by first checking that the extrapolation is safe, in the sense that it captures all behaviors of \(\bigcup_{i \geq 0} T_i \), and then checking that it is precise, i.e. that it has no more behaviors than \(\bigcup_{i \geq 0} T_i \). Both conditions are checked using sufficient conditions.

Lemma 2. The transducer \(T_{e_*} \) is a safe extrapolation if \(L(T_{e_*}) \subseteq L(T_{e_*}) \).

Indeed, we have that \(L(T_0) \subseteq L(T_{e_*}) \) and thus by induction that \(L(T_0^i) \subseteq L(T_{e_*}) \) (recall that \(T_0 \) is reflexive).

Determining whether the extrapolation is precise is a more difficult problem. The problem amounts to proving that any word accepted by \(T_{e_*} \), or equivalently
by some T_{e_i}, is also accepted by an iteration T_0^j of the transducer T_0. The idea is to check that this can be proved inductively. The property is true by construction for the transducer T_{e_0} from which the extrapolation sequence is built. If we can also prove that, if the property holds for all $j < i$, then it also holds for i, we are done. For this last step, we resort to the following sufficient condition.

Definition 5. A sequence of extrapolated transducers T_{e_i} is inductively precise if, for all i and word $w \in L(T_{e_i})$, there exist $j, j' < i$ such that $w \in L(T_{e_j} \circ T_{e_{j'}})$.

To check inductive preciseness, we use automata with counters, the counters being used to count the number of visits to the iterated increment. Three counters are used and we are thus dealing with an undecidable class of automata, but it can be shown that the counters are sufficiently “synchronized” for the problem to be reducible to a finite-state one. Details will be given in the full paper.

5 Using dominance to improve efficiency

Our experiments showed that, when computing powers of transducers, the determinization steps could be very resource consuming, even though the resulting transducer was not that much larger than the ones being combined.

Looking at the states generated during these steps, it appeared that they corresponded to large, but vastly redundant, sets of states of the nondeterministic automaton. This redundancy is due to the fact that there are frequent inclusion relations between the languages accepted from different states of the transducer. We formalize this observation with the following notion of dominance, similar to the concept used in the ordered automata of [WB00].

Definition 6. Given a nondeterministic finite automaton $A = (Q, \Sigma, \delta, q_0, F)$, let A_q be the automaton $A = (Q, \Sigma, \delta, q, F)$, i.e. A where the initial state is q. We say that a state q_1 dominates a state q_2 (denoted $q_1 \geq q_2$) if $L(A_{q_1}) \subseteq L(A_{q_2})$.

Clearly, when applying a subset construction, each subset that is generated can be simplified by eliminating dominated states. However, in order to use this, we need to be able to efficiently compute the dominance relation.

A first step is to note that, for deterministic automata, this can be done in quadratic time, by computing the synchronized product of the automaton with itself, and checking reachability conditions on this product. The problem of course is that the automaton to which the determinization and minimization procedure is applied is not deterministic. However, it is obtained from deterministic automata by the composition procedure described in Section 2, and it is easily possible to approximate the dominance relation of the composed transducer using the dominance relation of the components.
6 Experiments

The results presented in this paper have been tested on a series of case studies. The prototype implementation that has been used relies in part on the LASH package [LASH] for automata manipulation procedures, but implements the specific algorithms needed for transducer implementation. It is a prototype in the sense that the implementation is not at all optimized, that the interfaces are still rudimentary, that the implementation of the preciseness criterion is not fully operational, and that the increment detection procedure that is implemented is not yet the final one.

As a first series of test cases, we used transducers representing arithmetic relations, such as $((x, x + k)$ for many values of k. Turning to examples with multiple variables, the closure of the transducers encoding the relations $((x, y), (z + 1, x + 2, y + 3))$ and $((w, x, y, z), (w + 1, x + 2, y + 3, z + 4))$ were successfully computed. In addition, we could also handle the transducer encoding the transition relation of a Petri net arithmetically represented by $(((x, y), (x + 2, y - 1)) \cup ((x, y), (x - 1, y + 2))) \cap \mathbb{N}^2 \times \mathbb{N}^2$. An interesting aspect of this last example is that it is disjunctive and can not be handled by the specific techniques of [Boi99]. In all these examples, the sampling sequence consists of the powers of 2. In Table 1 we give the number of states of some transducers that were iterated, of their closure, and of the largest power of the transducer that was constructed.

| Relation | $|T_0|$ | $|T_T|$ | Max | $|T_\infty|$ |
|----------|-------|-------|-----|-----------|
| $(x, x + 1)$ | 3 | 3 | 11 |
| $(x, x + 7)$ | 7 | 9 | 91 |
| $(x, x + 73)$ | 14 | 75 | 933 |
| $(((x, y), (x + 2, y - 1)) \cup ((x, y), (x - 1, y + 2))) \cap \mathbb{N}^2 \times \mathbb{N}^2$ | 19 | 70 | 1833 |
| $((x, y), (x + 2, y - 1)) \cup ((x, y), (x - 1, y + 2))$ | 21 | 31 | 635 |
| $\cup ((x, y), (x + 1, y + 1)) \cap \mathbb{N}^2 \times \mathbb{N}^2$ | 91 | 251 | 2680 |

Table 1. Examples of transducers and their iteration.

We also considered the parametric systems which were used as examples in previous work on transducer iteration. We tried the main examples described in [BJNT00, JN00, Tou01, AJNd02] and our tool was able to handle them. In this case, sampling was not needed in the sense that all powers of the transducer were considered.
7 Conclusions and comparison with other work

As a tool for checking infinite-state systems, iterating regular transducers is an appealing technique. Indeed, it is, at least in principle, independent of the type of system being analyzed and is a natural generalization of the iteration of finite-state relations represented by BDDs, which has been quite successful.

Will the iteration of regular transducers also have a large impact on verification applications? The answer to this question is still unknown, but clearly the possibility of scaling up the technique will be a crucial success factor. This is precisely the direction in which this paper intends to make contributions. Indeed, we believe to have scaled up techniques for iterating transducers both qualitatively and quantitatively. From the qualitative point of view, the idea of sampling the sequence of approximations of the iterated transducer, as well as our increment detection and closing technique have enabled us to handle arithmetic transducers that were beyond the reach of earlier methods. Arithmetic relations were also considered in [JN00,BJNT00], but for a simple unary encoding, which limits the expressiveness of regular transducers. From the quantitative point of view, systematically working with reduced deterministic automata and using efficiency improving techniques such as dominance has enabled us to work with quite complex transducers of significant, if not really large size. At least, our implemented tool can find iterations well beyond what can be done by visually inspecting, and manually computing with, automata.

Our work definitely builds on earlier papers that have introduced the basic concepts used in the iteration of regular transducers. For instance, our technique for comparing successive approximations of the iterated transducer can be linked to the reduction techniques used in [JN00,DLS01,BJNT00,AJNd02]. However, we work from the point of view of comparing successive approximations, rather than reducing an infinite-state transducer. This makes our technique similar to the widening technique found in [BJNT00,Tou01], but in a less restrictive setting. Furthermore, we have a novel technique to check that the “widened” transducer corresponds exactly to the iterated transducer. Also, some of the techniques introduced in this paper could be of independent interest. For instance, using dominance to improve the determinization procedure could have applications in other contexts.

Techniques for iterating transducers are still in their infancy and there is room for much further work. The set of transducers we have handled is still limited and there are many other examples to explore and to learn from in order to improve our technique. Our implementation can still be substantially improved, which can also lead to further applications and results. Finally, there are a number of possible extensions, one being to handle automata with infinite words, which would lead the way to applying the iteration of transducers to dense real-time systems.
Acknowledgement

We thank Marcus Nilsson, Parosh Abdulla, Elad Shahar, and Martin Steffen for answering many email questions on their work.

References

