Eccentric training improves tendon biomechanical properties: a rat model

Introduction

• Eccentric = treatment of choice for tendinopathies
• Prolonged program of sub-maximal eccentric contractions reduced all symptoms of tendinopathy
• A minimum of 20 training sessions appears to be necessary
• Morphological and biochemical changes in the tissue are not yet clear
Aim

- To better define the biomechanical changes that affect healthy tendinous tissue after eccentric and concentric training
Materials & methods

• The Institutional Animal Care and Use Ethics Committee of the University of Liège approved the protocol used in this study
Materials & methods

18 rats

Group U
Untrained
6 rats
No physical exercise

Group C
Concentrique
6 rats
Running on treadmill
(+15°, 17m/min, 1h, 3x/sem, 5 sem)

Group E
Eccentrique
6 rats
Running on treadmill
(-15°, 17m/min, 1h, 3x/sem, 5 sem)
Materials & methods

- Tricipital tendon
- Patellar tendon bilaterally
- Achilles tendon
Materials & methods

• Biomechanical testing up to rupture after measurement

• Histological cross-section

Haematoxylin eosin

Masson’s trichrome
Results

<table>
<thead>
<tr>
<th>Tendons</th>
<th>U</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-training weight (g; average ± standard deviations [SD])</td>
<td>338.2 ± 2.1</td>
<td>356.4 ± 10.7</td>
<td>363.0 ± 5.7</td>
</tr>
<tr>
<td>Weight after 5 weeks of training (g; average ± SD)</td>
<td>424.4 ± 14.57</td>
<td>441.6 ± 3.3</td>
<td>467.0 ± 19.8</td>
</tr>
<tr>
<td>A (mm2; average ± SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achilles</td>
<td>27.1 ± 10.9</td>
<td>19.4 ± 3.8</td>
<td>25.7 ± 9.5</td>
</tr>
<tr>
<td>Patellar</td>
<td>48.5 ± 11.5</td>
<td>36.8 ± 15.4</td>
<td>36.6 ± 6.8</td>
</tr>
<tr>
<td>Tricipital</td>
<td>45.5 ± 17.9</td>
<td>74.8 ± 16.4</td>
<td>79.1 ± 20.2</td>
</tr>
<tr>
<td>F (N; average ± SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achilles</td>
<td>61.7 ± 8.5</td>
<td>66.4 ± 8.9</td>
<td>71.5 ± 13.1</td>
</tr>
<tr>
<td>Patellar</td>
<td>61.2 ± 8.3</td>
<td>75.3 ± 10.3</td>
<td>79.3 ± 11.3</td>
</tr>
<tr>
<td>Tricipital</td>
<td>28.6 ± 9.9</td>
<td>36.5 ± 7.0</td>
<td>44.6 ± 7.6</td>
</tr>
<tr>
<td>F/A (MPa; average ± SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achilles</td>
<td>2.38 ± 1.28</td>
<td>3.58 ± 0.82</td>
<td>3.43 ± 1.61</td>
</tr>
<tr>
<td>Patellar</td>
<td>1.44 ± 0.47</td>
<td>2.40 ± 1.21</td>
<td>2.66 ± 0.33</td>
</tr>
<tr>
<td>Tricipital</td>
<td>0.38 ± 0.11</td>
<td>0.54 ± 0.20</td>
<td>0.63 ± 0.07</td>
</tr>
</tbody>
</table>

*P < 0.05. **P = 0.051.
Results
Discussion

- Improvement in the mechanical qualities:
 eccentric training > absence of training
 concentric training = absence of training

- Some studies ➔ sub-maximal eccentric exercise reduces the tendency of the tendon to degenerate by increasing the collagen fiber content and/or by reducing the neovascularisation.
Discussion

• Mechanical strength per surface area = between the three groups

→ no modification in the quality of the histological structure

→ the higher resistance relies on an increase in the tendon cross-sectional area
Discussion

• The physiological process = mechanotransduction

• = range of phenomena through which the organism converts mechanical stress into cellular responses ➔ structural changes

• = non-neural physiological process, which contributes to the maintenance of normal musculoskeletal structure in the absence of an injury, and to healing after an injury
Conclusion

- The mechanical properties of tendons in rats improve after specific training, especially following eccentric training.
- The higher resistance of trained tendons mostly results from an increase of the cross-sectional area although small modifications of the tissue architecture may also play a role.
- Our results partly explained how mechanical loading, especially in eccentric mode, could improve the healing of tendon.
Eccentric Training Improves Tendon Biomechanical Properties: A Rat Model

Jean-François Kaux, Pierre Drion, Vincent Libertiaux, Alain Colige, Audrey Hoffmann, Betty Nysgens, Benoît Besançon, Bénédicte Forthomme, Caroline Le Goff, Rachel Franzen, Jean-Olivier Defraigne, Serge Cescotto, Markus Rickert, Jean-Michel Crielard, Jean-Louis Croisier

1Physical Medicine Service and Department of Motility Sciences, University Hospital of Liège, University of Liège, Avenue de l’Hôpital, B35, B-4000 Liège, Belgium, 2Animal Facility of University Hospital of Liège, ULg-GIGA-R, University of Liège, Belgium, 3Department Argencol, University of Liège, Belgium, 4Laboratory of Connective Tissues Biology, GIGA-R, University of Liège, Belgium, 5Department of Clinical Biology, University Hospital of Liège, University of Liège, Belgium, 6Department of Biomedical and Preclinical Sciences, GIGA-R, University of Liège, Belgium, 7CREDEC, Laboratory of Experimental Surgery, University of Liège, Belgium, 8Department of Orthopaedic Surgery, University of Heidelberg, Germany

Received 7 December 2011; accepted 9 July 2012
Published online 30 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jor.22202

ABSTRACT: The treatment of choice for tendinopathies is eccentric reeducation. Although the clinical results appear favorable, the biomechanical changes to the tissue are not yet clear. Even if the mechanotransduction theory is commonly accepted, the physiology of tendons is not clearly understood. We aimed to better define the biomechanical and histological changes that affect healthy tendon after eccentric and concentric training. This study compared the effects of two methods of training (eccentric [E] training and concentric [C] training) with untrained (U) rats. The animals were trained over a period of 5 weeks. The tricipital, patellar, and Achilles tendons were removed, measured and a tensile test until failure was performed. A histological analysis (hematoxylin and eosin and Masson's trichrome stains) was also realized. There was a significant increase in the rupture force of the patellar and tricipital tendons between the U and E groups. The tricipital tendons in the control group presented a significantly smaller cross-sectional area than the E- and C-trained groups, but none was constated between E and C groups. No significant difference was observed for the mechanical stress between the three groups for all three tendons. Histological studies demonstrated the development of a greater number of blood vessels and a larger quantity of collagen in the E group. The mechanical properties of tendons in rats improve after specific training, especially following eccentric training. Our results partly explained how mechanical loading, especially in eccentric mode, could improve the healing of tendon. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:119–124, 2013

Keywords: tendon; eccentric; concentric; rat
Thank you!

http://hdl.handle.net/2268/164675