Article (Périodiques scientifiques)
Wisdom of crowds for robust gene network inference
Marbach, Daniel; Costello, James C.; Küffner, Robert et al.
2012In Nature Methods, 9, p. 796-804
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
20119_0_merged_1319862808.pdf
Preprint Auteur (3.04 MB)
Demander un accès

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~ 1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks.
Disciplines :
Sciences informatiques
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Marbach, Daniel
Costello, James C.
Küffner, Robert
Vega, Nicole M.
Prill, Robert J.
Camacho, Diogo M.
Allison, Kyle R.
Aderhold, Andrej
Bonneau, Richard
Chen, Yukun
Cordero, Francesca
Crane, Martin
Dondelinger, Frank
Drton, Mathias
Esposito, Roberto
Foygel, Rina
de la Fuente, Alberto
Gertheiss, Jan
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Greenfield, Alex
Grzegorczyk, Marco
Haury, Anne-Claire
Holmes, Benjamin
Hothorn, Torsten
Husmeier, Dirk
Huynh-Thu, Vân Anh  ;  Université de Liège - ULiège > GIGA-Management : Coordination ALMA-GRID
Irrthum, Alexandre ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Karlebach, Guy
Lèbre, Sophie
De Leo, Vincenzo
Madar, Aviv
Mani, Subramani
Mordelet, Fantine
Ostrer, Harry
Ouyang, Zhengyu
Pandya, Ravi
Petri, Tobias
Pinna, Andrea
Poultney, Christopher S.
Rezny, Serena
Ruskin, Heather J.
Saeys, Yvan
Shamir, Ron
Sîrbu, Alina
Song, Mingzhou
Soranzo, Nicola
Statnikov, Alexander
Vega, Nicci
Vera-Licona, Paola
Vert, Jean-Philippe
Visconti, Alessia
Wang, Haizhou
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Windhager, Lukas
Zhang, Yang
Zimmer, Ralf
Kellis, Manolis
Collins, James J.
Stolovitzky, Gustavo
Plus d'auteurs (49 en +) Voir moins
Langue du document :
Anglais
Titre :
Wisdom of crowds for robust gene network inference
Date de publication/diffusion :
15 juillet 2012
Titre du périodique :
Nature Methods
ISSN :
1548-7091
eISSN :
1548-7105
Maison d'édition :
Nature
Volume/Tome :
9
Pagination :
796-804
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBi :
depuis le 20 juillet 2012

Statistiques


Nombre de vues
426 (dont 46 ULiège)
Nombre de téléchargements
4 (dont 4 ULiège)

citations Scopus®
 
1355
citations Scopus®
sans auto-citations
1259
OpenCitations
 
1247
citations OpenAlex
 
1718

Bibliographie


Publications similaires



Contacter ORBi