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Abstract

Plasma have an important role in the field of aerospace, more specifically in atmo-
spheric reentry of spacecraft. Indeed, when an object (re)enters an atmosphere
at supersonic speed, a shock forms in front of it. This shock converts the kinetic
energy of the reentering object by ionizing the gas composing the atmosphere (air
on earth), creating a plasma. The latter interacts thermally and chemically with the
material. Understanding plasma behaviour is thus of capital importance in the design
of spacecraft material. For instance, space shuttles are protected during reentry by
thermal protection systems. The latter must be sufficiently resistant for the spacecraft
to survive the reentry. On the other hand, when a satellite is decommissioned, it
should fall back on earth and completely disintegrate in order to keep a clean spatial
environment. Inductively coupled plasma facilities have been created in order to
study these interactions. They reproduce the atmospheric reentry by heating a plasma
using electric induction. There has been an increasing interest in those facilities in
the past decades due to the high purity of the flow they produce and the possibility to
run long experimental campaigns. Over the years, the complexity of the experiments
performed has also increased. For instance, nozzles are now placed at the exit of
the ICP torch in order to study supersonic plasma. More complex geometries are
investigated, such as semi-elliptical nozzles for the study of shear flows. Unsteady and
turbulent behavior are also studied. New thermal protection systems involving elec-
tron transpiration cooling, i.e. the spontaneous emission of electrons from a surface
carrying the heat away, are tested. Another example is the study of communication
black-out during reentry, and the possible ways to mitigate this phenomenon.

Due to the wide variety of configurations encountered in ICP facilities and the
possibility to perform measurements in specific locations only, it is difficult to predict
the flow features beforehand. Flow prediction is very important before planning an
ICP experimental campaign, as the plasma modes could damage the facility. Moreover,
predicting the flow correctly saves not only preparation time, but also funds. In this
context, numerical solvers have been developed to simulate the ICP flows. The legacy
numerical solvers are based upon the finite volume method, demanding a high mesh
quality, making this approach very cumbersome for complex geometries. Moreover,
these solvers are only axisymmetric, most of them performing computations at
local thermodynamic equilibrium and steady state, missing many important physical
features of ICP flows. Moreover, they are not robust, as they are based on a staggered
solution strategy, converging in thousands of iterations and sometimes requiring to
be carefully monitored. In order to address all these issues, we develop in this work
the first monolithic multi-domain high order solver for inductively coupled plasma
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using the hybridized discontinuous Galerkin method. The high-order aspect of the
method brings accuracy and mesh flexibility, while the monolithic solution strategy
brings robustness to the code.

In this thesis, we first discuss the various plasma models stemming from the kinetic
theory of gas, each one representing a different degree of thermal and/or chemical
non-equilibrium. Unfortunately, we are not able to explore all of them in this work,
as the task is far too ambitious. The goal is to give an overview of the possible
improvements to the relatively simple thermochemical model used in this thesis,
which is the local thermodynamic equilibrium (LTE). Then, we particularize the LTE
plasma equations to the axisymmetric approximation of inductively coupled plasma
flows. In particular, we discuss hypotheses made on the electromagnetic field. We
also present the boundary conditions, explicitly stating that, in steady numerical
simulations, a coflow is introduced in the chamber in order to stabilize the flow. Then,
we present the multi-domain hybridized discontinuous Galerkin solver, which is the
first solver of its kind. We prove that the correct orders of convergence of the method
are retrieved on a manufactured solution. We also study the impact of the coflow on
the steady state result, and conclude that it does not have a significant influence on
the flow features in the jet. We also show that the HDG code is able to produce the
same result as a legacy FV solver, COOLFluiD, and that it is robust and converges in
only a few Newton iterations. Finally, we study a realistic case and assess the impact
of various experimental parameters on the flow features.

To summarize, we developed a robust and easy-to-use high order solver for induc-
tively coupled plasma which easily adapts to complex geometries. This thesis marks
a turning point in the field of ICP simulation, as it proves that high-order methods
are well suited for this applications. Thanks to its robustness, precision, ease of use
and flexibility, it opens the door to future developments in this field: supersonic flow
simulations, instability and turbulence studies, or more complex thermochemical
models.
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Introduction
1

1.1 Plasma
It is impossible to present our work on the development of a high-order numerical

solver for inductively coupled plasma without describing the notion of plasma, and
giving an overview of its wide range of applications. On earth, matter is mainly
encountered in one of three states: solid, liquid or gas. However, what is usually
called "the fourth state of matter", the plasma state, is estimated to compose about
90% of the visible matter in the universe. De facto, plasma are the ordinary state of
visible matter in the universe. A definition of the plasma state is given by Chen [20] :
"A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective
behaviour". The collective aspect is due to the electric interaction between charged
particles. In a classical gas, the particles interact only with their neighbours through
short-ranged collisions. In plasma, the charged particles also "feel" the presence of
others ions and electrons from a much longer distance due to the strong and wide
range nature of the electric force. These are long-ranged interactions.

One may wonder where to place the limit between a gas and a plasma. Although
this is not a definitive indicator, the ionization level can be used to estimate the
plasma behaviour of a material. It is defined as the ratio of the number density
of ionized ni over neutral nn particles and is governed by the well-known Saha’s
equation [99]. A fully ionized plasma typically has a large ionization parameter
(ni/ns ≫ 1), while a conventional gas will have a small one (ni/ns ≪ 1). For partially
ionized gas, the ionization parameter is close to unity. We have listed a series of
material and typical values for their ionization parameter in Table 1.1.

Material Ionization parameter ni/nn Plasma behaviour

Air (Room conditions) ≃ 0 Not a plasma

Laboratory nuclear fusion ≃ 1013 Fully ionized plasma

Sun core ≃ 1 Partially ionized plasma

Sun corona ≃ 1018 Fully ionized plasma
Tab. 1.1.: Representative values of ionization parameters for various plasma. [48]

Although relatively rare on earth, plasma can be observed in our everyday life by
looking at the sky: the sun is basically a giant ball of plasma. The northern lights,
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product of the interaction between the charged solar winds and our atmosphere, are
also a plasma. Finally, the electric arc occurring during lightning strikes ionizes the
air on its path, producing a plasma (see Fig. 1.1).

Fig. 1.1.: The sun (left), an aurora borealis (center) and a lightning (right) are composed of
plasma.

Nowadays, one of the first applications coming to our mind involving plasma is the
energy production through nuclear fusion. In this context, a gas (e.g. a mixture of
deuterium and tritium) is heated so that the kinetic energy of its nuclei is sufficient
to overcome the repulsive electric forces. The nuclei then fuse into new elements (α
particles and neutrons for the deuterium-tritium reaction), releasing a large amount
of energy. For the process to be effective, the gas must be heated to temperatures of
the order of 108K. In this regime, the charged particles move freely, and a plasma is
formed. The core of the stars are also the siege of fusion reactions (although different
from laboratory fusion). In fact, many stellar phenomena, such as the magnetic
activity or stellar winds are described using plasma physics. Generally speaking,
plasma are found in many fields of astrophysics, due to their large presence in the
visible universe.

It would not be fair to restrict the plasma technological applications to nuclear
fusion. In fact, plasma occur in a wide variety of fields. For instance, laser-generated
plasma are broadly used. They are produced by directing a high-energy pulsed
laser towards a surface. If the power of the laser is sufficiently large, the material
is heated and ionized, creating a plasma. It is used for thin films deposition and
ablation, elemental composition detection or spectroscopy. The plasma television
screens are organized as arrays of pixels filled with a plasma reacting to electric
fields. The excitation of these pixels give rise to the images. Plasma also have an
important role in medical applications, such as in nanomaterial synthesis or aerosol
processing. It is also present in biomaterials manufacturing. Plasma also allows the
deposition and ablation of materials with a resolution of the order of the nanometer.
These high-precision are required in the manufacturing of microprocessors, vital for
computers. In this work, we will be mainly concerned with plasma in the field of
aerospace. Whether it is in space propulsion (Hall thrusters) or the design of thermal
protection systems and reentry material, plasma play a central role in the aerospatial
industry and space exploration.

The definition of plasma state is relatively large, since it encompasses numerous
physical systems. In order to ease their physical description, plasmas have been
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categorized. Each category comes with a set of assumptions allowing to describe the
dominating physics. For instance, reentry plasmas can be considered dense enough
to have a fluid behaviour. On the other hand, sufficiently high in the atmosphere, the
air is so rarefied that the continuum hypothesis collapses and the plasma must be
seen from a statistical point of view. The highly ionized plasma in laboratory fusion
cannot be described in the same manner as atmospheric reentry plasma, because the
physics and chemistry are very different.

The exploration of all plasma types is far beyond the scope of this work. Instead, we
are mainly interested in the so-called low-temperature plasma (LTP). LTP are generally
produced using electrodes (in arc-jet facilities for instance, where a gas is heated
using an electric arc) or coils (e.g. in inductively coupled plasma facilities, extensively
discussed later). Basically, the generated electric field transmits kinetic energy to the
electrons, which then collide with the heavies (i.e. ions and neutrals), resulting in
chemical reactions, ionizations and the heating of the plasma. Because most of the
electromagnetic energy is yielded to the electrons, they have a larger temperature
(i.e. a larger kinetic energy) than the heavies, considered "low" temperature (thus the
denomination "low-temperature" plasma). When this temperature disparity occurs,
the plasma is said to be in thermal non-equilibrium, as opposed to a thermal plasma
(or plasma in thermal equilibrium), where the electrons and heavies have the same
temperature.

Although many LTP are in thermal non-equilibrium, this is not their defining
feature, as LTP can be found in various pressures (from near vacuum to atmospheric
pressures), temperatures (thermal equilibrium and non-equilibrium, for temperatures
ranging from a few to tens of thousands kelvin) and ionization (from partially to fully
ionized) conditions. In fact, the central characteristic of a LTP is its large chemical
reactivity at low gas (i.e. low heavies) temperature compared to nuclear fusion
plasma. The broad range of applications of LTP makes it an active field of research.
The interested reader may refer to the 2022 low-temperature plasma roadmap [2]
for a summary of the research and future development in this field. In this thesis,
we only focus on the LTP produced for studying the demise of space debris and the
design of thermal protection systems. In the following, we describe these applications
in more detail, and give the framework of the thesis.

1.2 Plasma for atmospheric re-entry
Space vehicles reenter the atmosphere with velocities of around 10 km s−1. For

instance, typical low-earth orbit re-entry happen at around 7.8 km s−1, which is the
velocity required to keep a spacecraft in orbit. On the other hand, lunar return occur
at around 11 km s−1. As the spacecraft enters the atmosphere, the flow is commonly
regarded as hypersonic, with a re-entry Mach number Ma > 5. Then it starts to
decelerate, becoming successively supersonic (Ma > 1), transonic (Ma ∼ 1) then
subsonic (Ma < 1) as the shuttle slows down and loses altitude. For Ma > 1, a
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reacting shock forms in front of the vehicle.
The cold and low density air surrounding the aircraft goes through the shock

moving with a large velocity. After the shock, it is denser and has a higher temperature.
Inside the shock, the kinetic energy of the air is converted into translational, rotational,
vibrational and electronic energy. The large internal energies attained in this region
(the temperature of the gas rises up to 104K) provoke molecular dissociation and
ionization, effectively creating a plasma. The excitation and de-excitation of the
bound electrons also produce radiation. These phenomena impose a huge heat load
at the surface of the shuttle. These heat fluxes can be hazardous for the crew and
material samples. For this reasons, thermal protection systems (TPS) have been
designed. Generally composed of ceramics, reinforced carbon or composite materials,
and organized in tiles covering the spacecraft, the purpose of TPS is to absorb the heat
flux during reentry and being gradually ablated from the shuttle surface, preserving
the latter. An example of a heat shield is given in Fig. 1.2).

Fig. 1.2.: On the left, the Orion spacecraft TPS. It is composed of blocks of ablative material
to protect its crew during reentry. Credit to NASA (Isaac Watson). On the right, a
drawing of atmospheric reentry (credit to ESA).

Ideally, any decommissioned man-made object sent in orbit should fall back on
earth at the end of its life cycle and disintegrate in the atmosphere. This way, the
space surrounding the earth remains clean, both decreasing the risk of collisions with
space debris and preventing damage caused by pieces of spacecraft falling back on
earth. Another hazard is the cascade effect: due to their large velocity, two objects
colliding may produce debris that will themselves collide other satellites with a large
speed, leading to a catastrophic chain of destruction. Unfortunately, since the first
launch of a man-made satellite, the number of decommissioned space objects in
orbit has been increasing, making the cleaning of space a topic of capital importance
(Fig. 1.3). In this context, NASA is developing the Active Debris Removal Vehicle,
which is meant to deorbit space debris. In the same objective, the European Space
Agency (ESA) has developed the ClearSpace-1 mission, supposed to be launched
in 2025. These missions, categorized as "active space debris removal", consists in
sending a space vehicle to deorbit the decommissioned objects. Unfortunately, these
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projects are expensive and time consuming. One solution found by NASA and ESA to
this problem is to take into account the safe disposal during the design of a satellite
or any orbiting object. In fact, the design of TPS and demise of space debris are two
sides of the same coin in the context of space reentry, as they consists in studying the
behaviour of a material when it reenters the atmosphere. For TPS, the objective is
to ensure its protective power during reentry, while space debris must disintegrate
completely.

Fig. 1.3.: Vizualisation of the number of known objects orbiting around the earth in 2022
(on the left). They have been magnified to be distinguishable. On the right, a 3D
model of the ClearSpace-1 with its mechanical arms around a space debris (Credits
to ESA).

One of the main challenges in designing these thermal protection systems is to
reproduce the aerothermodynamic features (i.e. the chemical reaction, heat transfers
and aerodynamics) of the reentry plasma experimentally. This way, flight conditions
can be reproduced on the ground and tested on sample material (TPS or space debris).
Inductively coupled plasma facilities have been specifically designed for these studies.
They are discussed later. But first, we give an overview of the characteristic scales of
the reentry plasmas.

1.2.1 Scales of reentry LTP

We assume that the spacecraft has sufficiently reentered the atmosphere so that
the air is not rarefied. This means that the Knudsen number is small (Kn ≪ 1). The
Knudsen parameter is the ratio of the mean free path, i.e. the characteristic distance
between inter-molecular collisions of the particles composing the plasma, over the
characteristic length of the problem. The plasma thus behaves like a fluid in this
regime, because the smaller the distance between the particle collisions, the denser
the fluid.

Another important parameter of the plasma is the Damköhler parameter Dam,
which assesses the degree of chemical equilibrium of a mixture. Dam is the ratio
between the characteristic reaction time of the plasma (such as ionization or chemical
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reactions) and the characteristic time of mass transport of the mixture. For Dam ≫ 1,
the plasma is in chemical equilibrium and reaction rates are instantaneous. For
Dam ≃ 1, the plasma is in chemical non-equilibrium and finite reaction rate must be
taken into account. Finally, for Dam ≪ 1, the reactions are so slow that chemistry
is considered frozen. For typical LTP, Dam ≥ 1 and the flow is either in chemical
equilibrium or non-equilibrium, depending on the flow conditions.

Another characteristic of the plasma is its magnetization, described by the hall
parameter β. It is a measure of how the electrons are affected by magnetic fields. In
plasma, ions and electrons tend to have a cyclotronic motion around the magnetic
field, meaning that they move along the magnetic field line with a gyrating motion.
If the plasma charged particles undergo sufficiently many collisions, these helicoidal
trajectories are perturbed and the magnetic field has little effect on the plasma
properties. β is the ratio of the cyclotron frequency, i.e. the frequency at which
the charged particles gyrate around the field magnetic field lines, over the collision
frequency of the plasma particles. If β ≫ 1, the plasma is magnetized and it is
influenced by the magnetic field. If β ≃ 1 then the plasma is weakly magnetized,
and the magnetic field has a marginal effect on its behaviour. Finally, if β ≪ 1, the
plasma is unmagnetized. In the present application, the plasma is assumed weakly
magnetized. Concerning the hydrodynamic characteristics of the plasma studied, the
Reynolds number is low (≃ 100), since the fluid has a large temperature and relatively
low velocity. The Mach number is highly subsonic (≤ 0.01), since the plasma after the
choc has a large speed of sound (≃ 2700 m s−1) and it has a relatively low velocity
of close to the spacecraft surface. Finally, the plasma electrons temperature Te is
greater or equal to the heavies temperature Th, meaning that the plasma can be
either in thermal equilibrium or non-equilibrium. The departure from equilibrium
strongly depends on the flow conditions. We have summarized the characteristics of
the re-entry plasma in Table 1.2.

1.2.2 Inductively coupled plasma

We discussed earlier the importance of studying reentry plasma experimentally.
Inductively coupled plasma (ICP) facilities have been designed to this end. An ICP
facility is schematically presented in Fig. 1.4. A gas (such as air or argon) enters the
torch through an annular injector, stabilizing the flow. It is heated by electric induction
using an alternative high-frequency current flowing through coils surrounding the
facility. Because the ions are more massive than the electrons (the protons and
neutrons are approximatively 1800 times heavier than electrons), the free electrons
are much more affected by the fast-varying electromagnetic field. They communicate
their kinetic energy to the slow heavies by collisions, creating a low-temperature
plasma (LTP). This is in fact a Joule effect, as the electric current (i.e. the free electron
motion) heats a resistance (the collision with the heavies composing the plasma). The
plasma reaches temperatures of about 104K in the torch center. It is then released in
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Non-dimensional parameter Value Plasma regime

Kn ≪ 1 Continuous medium

Re 100 Laminar

Ma 0.01 Subsonic

Dam ≥ 1 Chemical equilibrium and non-equilibrium flow

β ≃ 1 Weakly magnetized

Te/Ti ≥ 1 Thermal non-equilibrium and equilibrium
Tab. 1.2.: (Non exhaustive) list of re-entry plasma non dimensional parameters. Kn is the

Knudsen number, Re is the Reynolds number, Ma is the Mach number, Dam is the
Damköhler number, β is the hall parameter, Te is the free electron temperature
and Ti is the ion temperature. For each parameter, the corresponding physical
plasma regime is given.

the test chamber. The walls of the facility are maintained at a constant temperature
of a few hundred kelvins through a water-cooled cold-cage system.

Fig. 1.4.: Schematic representation of an ICP facility. The torch is surrounded by high-voltage,
radio frequency coils producing an alternative electromagnetic field. The gas is
injected in an annular fashion in order to produce a stabilizing flow recirculation
close to the inlet. Swirl can be added to further stabilize the torch. The test
material is placed in the chamber, after the torch exit. The torch is surrounded by
quartz. The magnetic field lines have been shown in pink lines. Image taken from
[66]

The flow is subsonic (Ma ≃ 0.01) and laminar (Re ≃ 100) in the whole facility,
but can be accelerated to supersonic speeds by placing a nozzle at the torch exit.
In subsonic regions, the flow is incompressible and the pressure is almost constant.
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Consequently, the large density variations that can be observed in an ICP facility
are due to the temperature gradients. These gradients give rise to strong variations
in the fluid transport properties, such as viscosity, thermal conductivity or electric
conductivity. The fluid injection system is annular in order to create a stabilizing
recirculating flow close to the inlet wall. Another stabilization technique consists
in adding a swirl component to the inlet. However, a too large swirl might create
a cold recirculation bubble at the torch exit. The degree of thermal and chemical
departure from equilibrium of the generated low-temperature plasma depends on
the operating conditions of the torch (frequency employed, power delivered by the
coil in the plasma, pressure, etc...). These parameters dictate if the electrons have
the time to thermalize, i.e. to reach the same temperature as the heavies through
collisions, and the chemical reactions speeds.

ICP facilities allow to study the aerothermodynamics of spacecraft reentering the
atmosphere. They produce a high purity plasma, as electric induction heating is a
non-intrusive method. Consequently, the chemistry of the fluid is not altered, and
the plasma chemical interaction and heat exchanges with a sample material can be
studied thoroughly. While ICP produce a plasma similar to the one encountered in
atmospheric reentry, they fail to match the exact reentry conditions. Indeed, ICP
facilities are not able to recreate the bow shock in front of the aircraft. Fortunately,
the experiments in ICP were proved to correctly recreate the flow conditions at the
spacecraft stagnation point using the concept of local heat transfer simulation (LHTS).
LHTS was introduced by Kolesnikov [62], who proved that the accurate simulation of
the stagnation point flow conditions on a spacecraft during atmospheric reentry can
be achieved if the gas has the same chemical composition as the studied atmosphere
and the pressure, velocity gradient, and total enthalpy at the boundary layer edge are
properly reproduced. This procedure allows to simulate the hypersonic conditions
occurring during reentry using a subsonic facility. ICP are also able to reproduce
atmospheres different from the earth. In Fig. 1.5, the Plasmatron ICP facility, which
is the main focus of this work, is shown in operation and Table 1.3 gives an idea of
its test envelope. The regimes listed in Table 1.3 can be easily reproduced and can be
sustained for hours (even, days) by the facility, allowing large test campaign to be
carried for weeks.
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Fig. 1.5.: Water-cooled copper calorimeter in the plasma jet produced by the Plasmatron
facility at the von Karman Institute for Fluid Dynamics.

Test gas argon, air, nitrogen, any mix!

Pressure range From 3 to 350 hPa

Electrical power Up to 1.2 MW

Heat flux 15 MW/m2

Induction frequency Up to 400 kHz

Inflow mass flux 8 g/s or 16 g/s

Torch diameter 16 cm

Chamber diameter 160 cm
Tab. 1.3.: Plasmatron operation ranges.

Of course, inductively coupled plasma are not the only tools for studying reentry.
The plasma shock tube, which recreates the strong bow shock in front of the spacecraft
by releasing a membrane between a high pressure, high temperature gas and cold air,
can also be used to study the effect of the plasma on test materials. Although the shock
tube conditions are closer to reentry (the plasma is produced in the strong shock),
the test time is very short, making the results not easily reproducible and difficult
to analyze compared to ICP. Another process is the use of arc-jet plasma facilities
(Fig. 1.6). The plasma is produced by supplying two electrodes with a continuous
current, creating an electric arc which ionizes and heats the gas. The main drawback
of this method is that the electrodes evaporate in the process, effectively polluting
the flow [111, 61, 104] and making the study of the chemical interaction with test
materials difficult. However, the power reached in this type of facility can be greater
than ICP.

Although very useful, the information provided by experiments in ICP facilities is

1.2 Plasma for atmospheric re-entry 9



Fig. 1.6.: Schematic representation of an arc-jet generated plasma. The electrodes placed at
both ends of the torch are supplied with continuous current, creating an electric
arc (yellow line connecting the electrodes). The arc ionizes the gas, sustaining the
plasma. Image taken from [66].

restrained by the measurement instruments, which usually allow for the acquisition
of specific quantities at defined locations. Generally speaking, the experimenter has
access to the temperature at specific locations in the plasma jet along the stagnation
line using spectroscopy: from the radiation emitted by the plasma, it is possible to
retrieve the temperature and plasma composition. The heat flux transmitted to a
sample material is usually only measured at the tip of the test sample or probe. Also,
it is very difficult to acquire data in the torch, although the flow inside the torch has
an impact on the jet and should be well understood. Another drawback is the cost
of running the facility. Predicting the viability of a test campaign is thus of capital
importance, as it allows not only to save time, but also funds.

In order to better prepare the experiments in ICP facilities, numerical solvers are
employed. They allow to predict flow characteristics, such as plasma modes sticking
to the torch walls, temperature distributions and heat fluxes. Although they rely on
a large set of assumptions (discussed later), they allow the virtual preparation of
experiments in new conditions without running the risk of damaging the device. In
this context, having an accurate ICP solver is an invaluable tool. Although several
numerical approaches have been tried for simulating ICP flows, none of them is fully
satisfying, as they imply too restrictive assumptions on the physics, geometry or on
the chemical complexity of the flow. In the following, we present a state of the art of
the ICP simulations and facilities, and identify the issues of existing solvers.
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1.3 State of the art

1.3.1 ICP facilities

Since the first attempts by Babat in 1947 [5] to maintain inductively coupled
plasma on a stream of gas, inductive plasmas have been intensively developed. The
space race opposing the USA and the Soviet union taking place from the beginning
of the sixties to the early seventies motivated the research for reentry plasma. The
Soviet union was the first to commission ICP facilities for reentry at the Institute
for Problems in Mechanics (IPM), with the series of Inductive Plasma Generators
(IPG) extending from the late seventies to the late nineties [44, 49, 9, 14]. The
facilities developed there were mainly used for the study of earth and, more recently,
martian atmospheric reentry. The IRS (Institut für Raumfahrtsysteme of Stuttgart
University) also developed its IPG facilities around the end of the eighties [4], until
the development of the IPG-6 in 2012 [31]. This latter facility allows to study
dusty plasma (i.e. plasma containing charged particles smaller than the millimeter),
omnipresent in space but impossible to analyze in more traditional ICP facilities. In
1997, the most powerful ICP device in the world, the Plasmatron, was commissioned
at the von Karman Institute for Fluid Dynamics (VKI) in Belgium [19]. The power
reached by this facility is still unmatched for an ICP, allowing to study the effect
of much larger heat transfers on sample material. The USA developed their first
inductively coupled plasma torch for space reentry in 2010, in the university of
Vermont [92, 91]. At the time, the only available aerothermal testing facilities in the
US were arc-jets. Later, in 2016, the university of Austin [39] commissioned another
ICP torch in order to match the increasing demand in aerothermal testing for the
Orion and Space-X Dragon missions. In 2023, the university of Urbana-Champaign in
Illinois presented its Plasmatron X wind tunnel [15]. It is to this day the largest in the
USA, allowing for testing larger sample material. The list of ICP torches presented
here is far from exhaustive, but it already shows the increasing interest in space
exploration, and more specifically in the study of atmospheric reentry flows.

1.3.2 The VKI Plasmatron

In this work, we focus on the VKI Plasmatron facility. This wind tunnel was
commissioned for the study of the thermal loading of the ESA Hermes space plane
(Fig. 1.7). The Hermes project was initiated in the late 1980s. Unfortunately, it was
abandoned in 1992, but the Plasmatron facility was nonetheless built, and is still
extensively used up to this day.
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Fig. 1.7.: Sketch of the Hermes space plane (taken from ESA).

Fifteen years ago, the thermal protection systems of the Intermediade eXperimental
Vehicle (IXV) were characterized in the Plasmatron. IXV was a project to validate
the atmospheric reentry technologies in flight conditions. It was part of the Future
Launcher Prepararatory Program (FLPP), an ESA program to prepare the new gen-
eration of launchers [93, 110]. The IXV mission was successfully accomplished in
February 2015. Around the same time, the Plasmatron was used in a large test
campaign for characterizing a new lightweight ablative carbon composite thermal
protection system [52]. It was also used to analyze the temperature and chemical
reactions in the boundary layer of the ablative material using emission spectroscopy
[53], which is a non-intrusive, line-of-sight technique based upon the analysis of the
electromagnetic spectrum radiated by the plasma. The Plasmatron was also used
to study the demise of space debris. In this context, Fagnani et al. [36] studied the
ablation and transient thermal response of quartz during reentry. This research moti-
vated the development of new measurement techniques in order to correctly assess
the radiative emissivity of material in ICP facilities [1], as this property is critical
in studying the response of reentry material. In the same spirit, the disintegration
of meteoroid was also investigated [54], as this process is still not well understood.
Another field of research is the study of the communication black-out phenomenon.
The black-out occurs during reentry, when the ionized air perturbs the propagation of
electromagnetic waves coming from an going to a spacecraft, preventing communica-
tions for a few minutes. The goal is to better understand the black-out causes and try
to mitigate its effects [74]. Electron transpiration cooling (ETC) was also studied at
VKI [18, 43]. It consists in reducing the heat load of on the thermal protection system
by using the thermoionic electron emission phenomenon. Basically, material with low
binding energy, when sufficiently heated, release electrons which carry away heat.

Another important topic is the characterization of the Plasmatron facility itself.
For instance, it is important to predict (i.e. to characterize) the plasma chemical
and thermal state for given experimental conditions. Basically, the characterization
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procedure consists in, for several input parameters, analyzing the features of the
resulting flow such as an instability, the temperature at a given point or the heat
flux at a specific location. For instance, the free stream flow temperature has been
characterized experimentally in several locations [37] using spectroscopy. During
another characterization campaign, Cipullo et al. [22] found that the ripple com-
ponent of the generator pulse rectifier is completely transmitted to the flow. This
effect strongly depends on the operating pressure of the facility. It can be directly
observed in the emission spectrum of the plasma, with alternating bright (when the
ripple component transmits more energy to ionize the molecules further) and dark
(when the ripple component is the lowest) bands (see Fig. 1.8). This phenomenon is
not observed in real flight conditions, and can have a non negligible impact on the
experiments. On the other hand, Demange et al. [28, 27, 29] developed numerical
and analytical models to study the instability modes of the hot axisymmetric plasma
jet released in the cold still air of the chamber. Depending on the experimental
conditions, the ICP jet may destabilize the boundary layer of the sample material,
which has an impact on heat tansfer and chemical interactions. This phenomenon
can also be seen in Fig. 1.8. Predicting the occurrence, location and severity of those
instabilities is of capital importance as they strongly impact the flow and may damage
the facility. However, because the experimenter is limited by its instrumentation and
the experimental device, the characterization can never be complete, and there will
always be unknown and unexpected flow features.

Fig. 1.8.: Camera picture of the plasma jet from the VKI Plasmatron showing both the
unsteadiness and the ripple part of the current (alternance of dark and light bands
in the jet) [21].

.

Focusing now on spatial modes, it was shown numerically [10] that, for any ICP
flow, the coil configuration impacted the flow geometry inside the torch, subsequently
breaking the axial symmetry of the jet (Fig. 1.9) Unfortunately, as the torch is not
easily accessible, only numerical studies have been performed.
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Fig. 1.9.: Effect of the coil configuration on the plasma flow in the torch (taken from Bernardi
et al. [10]). The jet is not symmetric due to the coil geometry.

Three new nozzles were designed for the Plasmatron: two conical and a semi-
elliptical one (see Fig. 1.10). They allow to reach supersonic speed (up to Ma ≃ 3)
and study the effect of a shock in front of the sample material. These conditions
are closer to real flight circumstances as they reproduce a front shock. In addition,
the semi-elliptical nozzle allows to study high-shear flat plate flow configurations. A
characterization of the nozzles can be found in Capriati et al. [16] and Elrassi et al.
[33].

Fig. 1.10.: On the left, the VKI supersonic nozzle in operation. A shock is created in front of
the sample material. On the right, the three new nozzles. Taken from [33]. (left).

Regarding the vast number of applications, the complexity of the flow and the
difficulty to acquire data in some locations of ICP flows, numerical solvers have been
developed to support experiment. Their main goal is to give sufficiently accurate
predictions on flow features to better prepare the experiments, saving both time and
funds. Moreover, these solvers may highlight physical phenomena that are not readily
observed in the facility, opening the door to novel fields of research. In the following,
we give an overview of the supporting codes of ICP facilities.
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1.3.3 Legacy numerical solvers for ICP

The difficulty of running an ICP facility and performing measurements in several
locations led to the development of dedicated numerical solvers to better prepare
the experiments. The first numerical model of an ICP was developed by Boulos
[12] in 1976 using a finite difference (FD) method, considering a 1D electric field.
He realized that a constant power had to be maintained during the ICP simulation,
otherwise the torch quenched. Further simulations were performed by the group
of Proulx for monoatomic and molecular gases [40]. Various numerical solvers of
increasing complexity based upon the finite volume (FV) method have also been
proposed. Vanden Abeele [106] studied the physics of ICP using a two-temperature
model of the plasma torch in non-equilibrium with a 2D electric field. Then, Magin
[75] developed an axisymmetric code for equilibrium cases for the complete problem
(torch and test chamber). Finally, inductively coupled plasma was implemented in
the COOLFluiD solver [68, 67], and is still used to this day at VKI. More recently,
the Center for Hypersonics and Entry Systems Studies (CHESS) at the University of
Illinois at Urbana-Champaign developed a 3D, unsteady code for ICP [65], opening
the path to capture 3D ICP modes and instabilities.

Although very useful, legacy solvers have a very limited range of applications. Most
of them are based upon FV or FD second order total variation diminishing method,
with relatively strict constraints on the mesh quality. This is a real obstacle in the
simulation of plasma flows with more complex geometries. Moreover, these methods
require a large number of elements in near isothermal walls, where large temperature
gradients occur. An example of such mesh for FV method is given in Fig. 1.11. The
element size in the near probe region is of the order of the micro-meter. When
considering 3D configurations such as the semi-elliptic nozzle, the computational cost
becomes prohibitive.

Fig. 1.11.: Mesh of a finite volume ICP solver (taken from Magin [75]).

Many of these codes are designed for steady-state computations, overlooking jet
instabilities. In order to partially alleviate the problem, ICP solvers can be coupled to
codes dedicated to the study of jet and boundary layer instabilities, such as VESTA
[96]. This approach, although giving valuable information, requires to couple and
master multiple codes (see Demange [26]). Moreover, these stability computations
are based on the gradient of temperature, velocity and pressure. Since the finite
volume solver do not give access to the gradient directly, they need to be reconstructed
before the results can be used. For this reconstruction to be accurate, the mesh must
be sufficiently refined, increasing the computational costs of the simulations. Another
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underlying hypothesis of legacy ICP solvers is the quasi-steady assumption, meaning
that the equations are averaged over one oscillation period of induction current. This
prevents to model the effect of the ripple part of the power supply, missing physical
phenomena linked to this issue. Most of the current ICP solvers are axisymmetric,
making the simulation of 3D geometries, such as the semi-elliptical nozzle, impossible.
A notable exception is the code developed at CHESS [85]. However, they solve for
the 3D Navier-Stokes equations for the fluid, while solving for the electric field in
the azimuthal direction only, preventing the study of any 3D electric field effect. The
simulation of ablation phenomena can be performed, but at the cost of coupling
two solvers. First, a simulation is performed using an ICP solver in the torch region.
The temperature profile obtained at the torch exit is then input in an ablation
solver. For instance, Schrooyen [101] developed an ablative solver in the high-
order discontinuous Galerkin (DG) software Argo [55]. Once again, the simulation
requires the use of at least two programs and a coupling procedure. Concerning
local thermodynamic equilibrium, Rini [98] proved that elemental de-mixing, i.e. the
diffusions of chemical elements, had an important effect on the plasma flow. None of
the previous solvers takes this phenomenon into account. The molecular radiation is
also completely overlooked in current ICP simulations, although it has an impact on
the heat transfer. Another issue is the solution strategy of the ICP solvers. The electric
field and hydrodynamic equations are solved in a decoupled manner. Basically, while
the electric field is frozen, the hydrodynamic field is solved. Then, the solution of the
hydrodynamic field is frozen while solving the electric field. This loop is continuously
performed until convergence occur. This method, although simple to implement
since the electric and hydrodynamic solvers can be constructed separately, has the
disadvantage of converging slowly towards the solution and sometimes leads to solver
instabilities [45, 109].

In regards of the numerous drawbacks of legacy ICP solvers, we aim to develop a
framework that can adapt to the rapid evolution of experimental ICP facilities. This
implies that the solver should be capable of reproducing unsteady phenomena, to be
able to capture high spatial frequencies in order to correctly simulate instabilities,
unsteady behaviours and spatial modes occurring in ICP flows. It should also work
with unstructured grids to represent complex geometries, and easily extend to new
physical and thermo-chemical features. For this reason, we decided to implement the
very first monolithic (i.e. fully coupled) high-order ICP solver using the hybridized
discontinuous Galerkin (HDG) method.

1.3.4 Hybridized discontinuous Galerkin method

The discontinuous Galerkin (DG) family of method was first introduced by Reed
and Hill [97] for hyperbolic problems in the context of neutron transport. During
the 1990s, DG methods were developed for convection-diffusion equations (see e.g.
the work of Cockburn and Shu [24]). In 2002, Arnold and Brezzi [3] analyzed the
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DG method applied to purely elliptic problems and improved its stability, adjoint
consistency and convergence rate. Although they were never used for ICP, DG codes
were employed in the case of high-enthalpy flows (e.g. Shrooyen et al. [101] in
the framework of ablation). DG methods result in stable and accurate high-order
discretization of the convective and diffusive operators on unstructured meshes of
almost arbitrary quality. They allow for straightforward imposition of the boundary
conditions (BC) and are very flexible to parallelization and adaptivity. Although the
computational complexity of DG is higher than standard methods, its computational
efficiency is increased and it requires less degrees of freedom. This is further improved
in combination with mesh and order (h and p) adaptation for which the methods are
particularly well suited.

In this work, we use a variant of DG, called the hybridized discontinuous Galerkin
(HDG) method. HDG was developed with the purpose of reducing the large systems
required when considering implicit DG methods. It was first presented by Cockburn
[23] for elliptic problems. The main advantage of the method is its reduced number
of globally coupled degrees of freedom (DOFs), obtained via static condensation
using hybrid variables, leading to a non-negligible reduction of the computational
costs and memory storage compared to DG as pointed out by Woopen [113]. The
method was further developed for linear and nonlinear convection-diffusion problems
by Nguyen et al. [88, 89, 90]. It was later applied to several physical configurations
(e.g. see Fernandez [38] for turbulent flows or Modave [80] for Helmholtz equation).
In this work, we use a HDG framework developed by Woopen, Balan and May [112]
in order to solve the ICP problem. The framework has the advantage to be both
user friendly and easy to modify. It is also already equipped with shock capturing
techniques and h and p adaptation. One of the main disadvantage of this code is that
it is not designed to support multi-physics problems, which is an issue regarding ICP
equations, as both Maxwell and Navier-Stokes equations have to be solved.

1.4 Scope and overview of the thesis
Considering the increasing complexity of the experimental ICP facilities, and the

drawbacks of the legacy ICP codes, we develop in this thesis a new numerical
monolithic solver based upon the hybridized discontinuous Galerkin method. Within
this framework, we hope to answer the following questions:

• In addition of being precise, can a high-order solver be robust? One
of the major issues with the legacy codes is their robustness, since the code
requires carefully designed mesh and a constant monitoring during the solution
procedure. Moreover, the solver usually requires thousands of iterations to
reach steady state. On the other hand, although high-order solvers are known
to be more accurate than finite volume methods, they are also less stable in the
vicinity of large gradients or shocks. Will the monolithic approach be sufficient
to make a robust plasma solver? Or will it be necessary to carefully design a
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numerical flux to stabilize the method near large gradients regions?

• Is the developed solver user-friendly? This is not the case with the legacy
codes, as they require a lot of trial and error to make the ICP solver converge.
Moreover, the careful design of the grid can be a barrier to the user. The CFL
convergence procedure is also cumbersome as it requires a constant monitoring
from the user. Finally, the convergence is slowed by the large number of
required Newton iterations. Since high-order methods are less sensitive to
mesh quality, we hope to make ICP simulations work on unstructured and
automatically-generated grids. We also want to rework the CFL procedure,
and hope that the monolithic solver developed will accelerate the convergence
process. Ideally, we would like it to work on a simple laptop.

• Can the new solver be easily adapted to the new experiments performed in
ICP facilities? We want the solver to be able to reproduce 3D modes, such as
the effect of the coil geometry, jet instabilities and the simulation of the ripple
part component of the generator and the general unsteady behavior of ICP
facilities. We also want to explore more more detailed physics: non-equilibrium
(both thermal and chemical), radiation and possibly the combination of LTE and
elemental de-mixing. We also want to study more complex probe geometries,
such as the probes used in the context of black out. Will the developed solver
be able to withstand these applications?

With the goal of answering these questions, we have structured our work as
follows:

Chapter 2 presents the equations governing a plasma in local thermodynamic equi-
librium (LTE). Starting from a general form of the Boltzmann equation, we
discuss the basic assumptions underlying the LTE model and give a short pre-
sentation of more general plasma descriptions, hinting at future developments.
This Chapter does not contain any original scientific contribution, but sets the
framework of the project.

Chapter 3 presents additional assumptions specific to ICP based on the LTE plasma
equations derived in Chapter 2. In particular, we introduce hypotheses on the
electric field, on the flow geometry and on the time averaging of the equations
with respect to the induction current frequency.

Chapter 4 discusses the hybridized discontinuous Galerkin method applied to ICP.
We present a new monolithic multi-domain solver valid for any conservation
law, but particularized to ICP.

Chapter 5 presents a validation and verification of the ICP numerical simulation. We
perform convergence studies using manufactured solution. We also study the
dependence of the solution on the mesh size and on the order of the method,
and compare our results with an existing code. We also discuss the convergence
properties of our solver.
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Chapter 6 We study the impact of the simulation parameters on the ICP torch. This
can be especially helpful for the experimenter, as it helps predicting the facility
behavior and thus better prepare the experiment. We have studied separately
the effect of the frequency, power, mass flow rate, swirl and background pressure
on the various flow fields.
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Governing equations
2

This work considers only plasma in both thermal and chemical equilibrium. Con-
sequently, the species composing the plasma have a common temperature and are
implied in infinite rate chemical reactions. This relatively simple model misses many
physical and chemical features of plasma flows. One of the possibilities to improve
the predictions of this model is to consider elemental demixing, i.e. the diffusion of
elements. It was proved by Rini [98] that, when a plasma is not too far from chemical
equilibrium, considering an LTE model accounting for the elemental diffusion gave as
accurate results as non-equilibrium models, with the advantage to have an easier set
of equations to solve. However, we do not consider this topic here. Before presenting
the LTE governing equations, we give a brief review of the wide variety of plasma
thermo-chemical models that should be tested in future ICP simulations.

2.1 Review of plasma modeling
Plasma can be modeled using the kinetic theory of gas, representing it as a collec-

tion of a large number of charged particles interacting with each other and with a
surrounding electromagnetic field. It consists in defining an equation for the velocity
distribution function of each species constituting the plasma: the Boltzmann equation.
The latter expresses the temporal evolution of this velocity distribution function by
taking into account the short (collisions of a particle and a neutral one) and long
(between charged particles, due to the electromagnetic force) range interactions
between particles. Solving this equation is still a subject of research for rarefied
plasma flow[42, 41, 30, 56, 84, 115], but is not the scope of this thesis. The plasma
considered in this work is sufficiently dense to be considered as a fluid. We thus
use an approach based on the moments of the Boltzmann equation to determine
conservation laws for the species constituting the plasma.

The kinetic plasma theory produces equations describing plasma using statistical
mechanics. The starting point of the kinetic theory is the Boltzmann equation for
each particle composing the plasma. Besides the variety of particles, their energy
levels and the way they collide with each other are also important in the description
of the plasma flow. Generally speaking, the plasma model accuracy increases with
the number of species taken into account and the level of accuracy of the modeling of
collisions. However, a too detailed description leads to overly complex models with
prohibitive computational costs. The simplest model, and the one used in this work, is
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a mixture at thermochemical equilibrium, meaning that the excitation and deexcitation
processes are in equilibrium, and the chemistry reaction occur much faster than the
hydrodynamic timescale. It has been shown that, for sufficiently large pressure and
low induction frequency, this assumption is reasonable for inductively coupled plasma
[81, 82]. However, in this work, we do not always satisfy these conditions, but still
consider the LTE model as a working approximation. Note also that models exists
accounting for elemental demixing, but we do not discuss them here ([98]). A second
model is the thermal equilibrium with finite rate chemistry. In this case, a continuity
equation for each species has to be solved, accounting for the species production
rate through chemical reactions. The advantage of such model is the relatively low
computational cost, but assumes a single temperature for the whole mixture. To
account for non-equilibrium phenomena, multi-temperature models, based on thermal
and chemical approach rather than kinetic theory, have been introduced by Park [95]
and Lee [70]. These models are still largely used today in aerospace applications. This
model assumes that every internal energy mode, i.e. the electronic, vibrational and
rotational energy modes of the molecules can be decoupled. Each mode represents a
distinct thermal bath. While computationally efficient compared to more detailed
models, its main disadvantage is the strong assumption of separability of the modes,
making these models valid only for small departures from equilibrium. Coming back
to the kinetic theory, state-specific models improves the validity of multi-temperature
descriptions by considering some energy states as pseudo-species [76]. The energy of
a molecular state is split into modes assumed to be far from equilibrium. Each mode
is treated as a separate multi-temperature pseudo-species. In the same spirit, state-to-
state models are the most rigorous energy partitioning models, treating all internal
energy levels as pseudo-species [58, 59, 94]. However, they are computationally
expensive due to the large number of energy levels far from equilibrium. Finally, the
coarse-grain model [83, 79, 69, 86] groups close energy levels into bins, reducing
the computational costs. Each bin is then treated as a pseudo-species, with its own
temperature and continuity equation. It was shown that, with a limited number of
bins, the non-equilibrium behavior of the plasma is retrieved [83].

The second challenge of kinetic theory is to compute the transport coefficients
arising from the moments of Boltzmann’s equation. They are determined using the
transport theory, which consists in studying deviation from thermochemical equilib-
rium by developing the velocity distribution function in powers of a small parameter
measuring that deviation. It then provides a relationship between the thermal quanti-
ties, based on the velocity fluctuations, and the gradient of the macroscopic quantities.
Detailing the procedure for determining those coefficients is far beyond the scope of
this thesis. The interested reader may refer to the work of Braginskii [13] or Balescu
[7, 8] for an introduction to this exercise. The work of Chapman and Cowling [17]
exposes early results of the kinetic theory, and the expansion procedure from the
equilibrium configuration (the so-called Chapman-Enskog expansion). The plasma
under investigation in this work are partially ionized, and have been broadly studied
in the literature. To cite a few contributions, Kruger and Mitchner studied plasma
out of equilibrium undergoing a magnetic field [64]. Kolesnikov [63] proposed the
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first model self-consistent regarding diffusive phenomena. Magin developed models
specifically designed for ICP applications [78, 77], with a simple Eucken correction for
taking into account internal degrees of freedom of atoms and polyatomic molecules.
Later, Graille et. al have derived a kinetic model for multi-component plasmas taking
into account the electromagnetic field and thermal non-equilibrium influence [50].
Moreover, Nagnibeda and Kustova [87] developed a transport theory accounting for
the internal energy and the non-equilibrium effects. In this work, the internal energy
is ignored in the computation of the transport properties. However, a simple Eucken
correction is applied to the heat flux.

Another important feature of plasma flows is the electromagnetic field. In plasma,
the charged species evolve in an electromagnetic field that is partially originating
from an external source (such as a coil) but also partially produced by themselves.
The electric and magnetic fields can be described using the well-known Maxwell’s
equations. In the following, we will consider the specific case of un-magnetized
plasma, i.e. the magnetic field is sufficiently small to have no impact on the transport
properties. We will also consider the plasma as a linear, homogeneous and isotropic
medium with respect to electromagnetic fields, with the vacuum electric permittivity
and magnetic permeability.

2.2 Thermo-chemical equilibrium model for
inductively coupled plasma

Starting from the Boltzmann equation, we give a general outline for the derivation
of the plasma equations at thermal and chemical equilibrium. The developments
presented here follow closely the notation proposed by Giovangigli [46].

2.2.1 The Boltzman equation

Let us consider a plasma composed of several species denoted by i ∈ S, with S the
set of all species composing the plasma. Let fi,I(x, ci, t) be the velocity distribution
function of a particle i, with x the position, ci the species velocity, t the time and
I ∈ Qi its quantum energy state, Qi being the set of admissible quantum energy state
of species i. fi is governed by the Boltzmann equation

Di(fi) = ∂tfi,I + ci,I · ∇fi,I + Fi

mi

· ∂ci
fi,I = Si + Ci, ∀i ∈ S, (2.1)

where Di is the streaming differential operator, mi is the species mass, Fi is the
external force undergone by species i, ∇ is the gradient operator in spatial coordinates
and ∂ci

is the gradient operator in the velocity space. The only force acting on the
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system is assumed to be the Lorentz force, given by

Fi = qi (E + ci × B) , ∀i ∈ S, (2.2)

where qi is the charge of particle of species i, E and B are respectively the electric and
magnetic fields. Note that the electromagnetic field results not only from external
sources, but also from the particles composing the plasma themselves.

Another crucial concept in kinetic theory is collisions. Collisions are interactions
between particles (of the same or different kind) sufficiently close to each other.
There can be short ranges collisions (implying a neutral and another particle) or
long range (implying two charged particles due to electromagnetic force). These
collisions have an impact on the distribution function of the particle, and are taken
into account as source terms on the right hand side of Eq. (2.1). Collisions can
either be scattering, as represented by the operator Si, or chemically reacting, as
represented by the operator Ci. On the contrary of the former, the latter create and
destroy species through a chemical reaction. Note that we do not consider nuclear
plasma here, so the mass is always conserved.

Macroscopic quantities

Eq. (2.1) is not solved as such. Since the considered plasmas are dense enough to
have a fluid behaviour, macroscopic densities can be defined. The species number
density ni represents the number of particles of species i per unit volume

ni =
∑

I∈Qi

∫
fi,Idci. (2.3)

The density is then given by ρi,
ρi = mini. (2.4)

We also define the mixture density ρ

ρ =
∑

i∈S

ρi, (2.5)

and the mixture hydrodynamic velocity v as

ρv =
∑

i∈S

∑

I∈Qi

∫
micifi,Idci (2.6)

The mixture total energy is given by

1
2ρv · v + e =

∑

i∈S

∑

I∈Qi

∫ (1
2mici · ci + EiI

)
fidci (2.7)
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where E is the internal energy of the mixture and EiI is the internal energy of species
i in quantum state I. The species diffusion velocity is defined as

Vi = 1
ni

∑

I∈Qi

∫
Cifi,Idci, (2.8)

with Ci the peculiar diffusion velocity, defined as

Ci = ci − v. (2.9)

Collisional invariants

According to the laws of dynamics, and energy conservation principles, the mass,
momentum and total (kinetic + internal) energy are conserved after a collision.
These collisional invariants are functionals denoted ψl, l ∈ [1;n + 4], where ns is
the number of species composing the mixture, whose value summed over all species
implicated in a collision does not change during that collision. For the scattering
operator S, they take the form of




ψk
i = δki, k, i ∈ S, (Mass conservation)

ψn+ν
i = micνi, i ∈ S, ν ∈ 1, 2, 3 (Momentum conservation)

ψn+4
i = 1

2mici · ci + EiI i ∈ S, I ∈ Qi (Energy conservation)

(2.10)

where cνi is the component of ci in the ν direction. These collisional invariants, once
projected on the Boltzmann equation, give conservation equations. Let us define the
following scalar product

(ξ, ζ) =
∑

i∈S

∑

I∈Qi

∫
ξiζidci. (2.11)

One can show that the projection of the collisional invariants on the scattering
collision operator S yields [46]

(ψl,S) = 0. (2.12)

Taking into account Eq. (2.12), one gets the general form of macroscopic equations
associated to collisional invariant ψl:

(
ψl,D(f)

)
=
(
ψl, Ci

)
. (2.13)

Enskog expansion

The macroscopic plasma equations are obtained from the Enskog expansion of
the velocity distribution function as a function of a small parameter ϵ around the
Maxwellian velocity distribution function f 0

i

fi = f 0
i (1 + ϵϕi + O(ϵ2)). (2.14)
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The ϵ parameter is the Knudsen number, which is small in the fluid limit. Using ε, it
is possible to rewrite Eq. (2.1) as

Di(fi) = 1
ϵ
Si + ϵaCi, ∀i ∈ S, (2.15)

The parameter a represnts the collisional regime of the plasma. If a = −1, the plasma
is in kinetic equilibrium, meaning that the scattering collision term is as important as
the chemical one. If a = 0, we are in strong reaction regime, where reactive collisions
are dominated by scattering collisions. Finally, a = 1 is the Maxwellian regime, where
the scattering collisions are much more important than the chemical ones. In this
work, we assume that a = 1. From there, the scattering collisionnal invariants ψl are
projected on Eq. (2.15) and, considering Eq. (2.12), one gets

(
ψl,D(f)

)
= ϵ

(
ψl, C

)
(2.16)

The expansion of Eq. (2.14) is then plugged in Eq. (2.16) and, after some algebra
not detailed in this work, the macroscopic equations are retrieved.

2.2.2 Macroscopic equations for plasma in thermochemical
equilibrium

The macroscopic equation governing the plasma flow in the Maxwellian collisional
regime are given in their general form by





∂tρi + ∇ · (ρiv) + ∇ · (ρiVi) = ω̇i,∀i ∈ S

∂t(ρv) + ∇ · (ρvv + pI) − ∇ · τ = j × B

∂t

(1
2ρ||v||2 + ρe

)
+ ∇ · (ρHv) + ∇ · (q − τ · v) = j · E

(2.17)

where Vi is the species diffusion velocity, ω̇i is the species production rate, H =
e + ||v2||

2 + p
ρ

is the mixture total enthalpy, E is the electric field, B is the induced
magnetic field, j is the diffusion current and q is the charge. Since we are not
interested in length scales smaller than the Debye length, the plasma is considered
quasi-neutral. Finally, τ is the viscous stress tensor and q is the heat flux. In this work,
we solve a simplified version of Eq. 2.17, using the property of mass conservation (no
mass is produced) ∑

i∈S

ω̇i = 0 (2.18)

and the linear dependence of the diffusion fluxes
∑

i∈S

ρiVi = 0, (2.19)
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yielding a set of equations for the plasma mixture (also arising from mass conserva-
tion) 




∂tρ+ ∇ · (ρv) = 0
∂t(ρv) + ∇ · (ρvv + pI) − ∇ · τ = j × B

∂t

(1
2ρ||v||2 + ρe

)
+ ∇ · (ρHv) + ∇ · (q − τ · v) = j · E

(2.20)

On the right hand side of the momentum equation, the term j × B appears. In fact,
the only external force acting on particle i ∈ S is the Lorentz force, given by

Fi = niqiE + niqi (v + Vi) × B (2.21)

Consequently, the total force exerted on the plasma is

F =
∑

i

Fi =
∑

i

niqi (E + v × B) + niqiVi × B (2.22)

Because of the plasma quasi neutrality,
∑

i∈S

niqi = 0, (2.23)

the linear dependence of the diffusive flux (Eq. (2.19)) and defining the diffusion
current

j =
∑

i

niqiVi, (2.24)

one gets
F = j × B (2.25)

which is the force effectively felt by the particles. On the other hand, the power
dissipated by the Lorentz force for each species is

P =
∑

i

Pi =
∑

i

Fi · (v + Vi) . (2.26)

Using once again the quasi neutral hypothesis and some algebra, one can prove
that

P =
∑

i

niqiVi · E = j · E, (2.27)

giving the right hand side of the energy equation.

Transport fluxes in equilibrium plasma

The transport fluxes describe the rate at which particles, momentum or energy are
transported by diffusion. They depend on parameters called transport coefficients,
and discussed below. The viscous stress tensor τ , impacting the momentum and
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energy transport fluxes, is given by

τ = η
[
∇v + (∇v)T − 2

3 (∇ · v) I
]

+ κ (∇ · v) I (2.28)

with κ and η respectively the bulk and dynamic viscosity. In this work, κ is neglected,
although it can have a significant impact for large polyatomic gases (Giovangigli et al.
[47]) and non-equilibrium flows. The heat flux q, intervening in the energy transport
diffusion flux, is given by

q = −λ∇T (2.29)

where T is the plasma equilibrium temperature and λ is the thermal conductivity. We
take a few steps away from the derivation of Giovangigli and use an approach that
was employed by Scoggins [102]. We split λ into several contributions:

λ = λh + λe + λint + λR + λD (2.30)

where

• λh is the heat diffusion coefficient associated to heavy particles translation.

• λe is the heat diffusion coefficient associated to electron translation. Its relative
importance increases with temperature.

• λint is the heat diffusion coefficient associated to rotation and vibration of the
species. Its relative importance also increases with temperature.

• λR is the reactive heat diffusion coefficient. It represents the heat transfer due
to the energy of the chemical reaction and the diffusion of the species in the
plasma.

• λD is the heat diffusion due to the Dufour effect, namely the heat transfer
resulting from a concentration gradient of the species.

Note that the classic Fourier coefficient λF ourier is only given by

λF ourier = λh + λint. (2.31)

Finally, the diffusion current j, defined as

j =
∑

i

niqiVi (2.32)

with qi the charge, ni the number density and Vi the diffusion velocity of species i.
Using kinetic theory, it is possible to derive a general expression for j which depends
on the electric field E, the electric conductivity σ, the pressure p, the temperature
gradients and the diffusion coefficients Dij, representing the rate at which species i
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diffuse within species j:

j = σE −
∑

i,j∈S

niqiDij

( ∇pj

nkBTh

− yjp

nkBTh

∇ ln(p) + kh
Tj

∇ ln(Th) + ke
Tj

∇ ln(Te)
)

(2.33)

where S is the set of all species constituting the plasma, Te and Th are the electrons
and heavy temperatures, yi is the species mass fraction, n is the plasma number
density, ni is species i number density, κe

Ti
and κh

Ti
are the thermal diffusivity of the

electrons and heavies respectively, Dij is the diffusion coefficient of species i in species
j, p is the plasma pressure, pi is species i partial pressure, qi is the charge of species i,
σ the plasma electric conductivity and kB the Boltzmann constant. Eq. (2.33) is in
fact a generalized Ohm’s law. In the absence of spatial gradients, one can prove that
the electrons diffuse much faster than the heavies. Consequently, only the electrons
carry the diffusion currents and Eq. (2.33) becomes

j ≃ σeE, (2.34)

with σe the electron electric conductivity.

Transport coefficients

The viscosity η, thermal conductivity λ and electrical conductivity σe are transport
coefficients that can be determined using the kinetic theory. More specifically, the
transport properties are computed using the Galerkin approximate solution of the
linearized Boltzmann equation. In order to compute these coefficients, we use the
Mutation++ library developed by Scoggins et al. [103]. In Fig. 2.1, we show the
discrepancy between the Sutherland and LTE viscosity of a mixture of air with 11
species at a pressure of 1 atmosphere. The viscosity ηi of a fluid composed of particles
of type i ∈ S is basically proportional to the square root of the particle temperature
Ti and conversely proportional to its effective collisional cross section σi, with σi a
portion of space surrounding the particle where collisions occur

ηi ∝
√
Ti

σi

. (2.35)

For constant σi, viscosity is proportional to
√
T , which is in fact Sutherland’s law.

However, when increasing the temperature of the gas, the plasma starts to ionize.
Ionization tends to diminish the mean free path of the particles. It means that they
more frequently collide, and their cross-section increases accordingly. The viscosity
evolution departs from Sutherland’s law (around 2000 K for air). When the ionization
becomes sufficiently large, viscosity starts to diminish again (around 11 000 K for air).
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Fig. 2.1.: Comparison between the dynamic viscosity η obtained via Sutherland’s law and
using Mutation++ with a LTE model for a mixture of air with 11 species at
1 atm. For low temperatures, both quantities are very similar, following a profile
proportional to

√
T . When ionization becomes important, the effective collisional

cross-section increases, and the Sutherland and LTE viscosities differ greatly.

In Fig. 2.2, we have compared the heat conductivity obtained via Fourier’s law and
using the LTE model. It can be shown that the reactive conductivity of each species
λR,i, which is taken into account in LTE but not in the Fourier model, is proportional
to the variation of the molar mass fraction with respect to temperature. When looking
at the air molar fraction in Fig. 2.5, the peaks observed in Fig. 2.2 correspond to
large variations of the molar fraction of the species. For instance, the peak in heat
conductivity around 3000 K is explained by the dissociation of dioxygen O2 in oxygen
O. and the creation of nitrogen oxide NO. On the other hand, around 7000 K, the
dinitrogen N2 dissociates in nitrogen N. Finally, around 10 000 K, the nitrogen and
oxygen ionize, releasing electrons. The latter also participate in heat transfer and
increase the heat conductivity of the mixture. It is represented by λe. These effects,
not taken into account in the simple Fourier model, have an important impact on the
plasma heat conductivity.
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Fig. 2.2.: Comparison between the heat conductivity coefficient λ computed with Fourier’s
law and using Mutation++ with a LTE model for a mixture of air with 11 species
at 1 atm. For low temperatures, both quantities are very similar, but depart as the
temperature is increased.

The heat capacity at constant pressure of the mixture (Fig. 2.3) has the same
behaviour as the heat conductivity, with peaks at the same temperature. In fact, the
heat capacity depends on the mass fractions Yi variation of the species with respect
to temperature (instead of the species molar fractions Xi). However, for air, both
quantities behave similarly, giving qualitatively similar profiles.
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Fig. 2.3.: Heat capacity at constant pressure cp of air mixture with 11 species at 1 atm as a
function of temperature.

Finally, the electric conductivity increases with temperature (Fig. 2.4). Since the
conductivity is increasing due to the electrons, it start increasing when the gas ionizes,
close to 7000 K.
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Fig. 2.4.: Electric conductivity σe of air mixture with 11 species at 1 atm as a function of
temperature.
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Fig. 2.5.: Species molar fractions X of a mixture of air with 11 species at 1 atm.
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2.3 Navier-Stokes and Maxwell’s equation
The previous considerations lead to the following system of equations describing

the plasma flow at thermochemical equilibrium




∂tρ+ ∇ · (ρv) = 0
∂t(ρv) + ∇ · (ρvv + pI) − ∇ · τ = j × B

∂t

(1
2ρ||v||2 + ρe

)
+ ∇ · (ρHv) + ∇ · (q − τ · v) = j · E

(2.36)

where
H = e+ 1

2 ||v||2 + p

ρ
(Total enthalpy)

τ = η
[
∇v + (∇v)T

]
− 2

3η∇ · vI (Viscous stress tensor)

q = −λ∇T (Heat flux)

(2.37)

with all symbols keeping their previous meaning and j following Ohm’s law Eq. (2.33).
The transport properties of the plasma mixture are computed using the Mutation++
library according to the LTE model. The electromagnetic field is governed by Maxwell
equations for un-magnetized and un-polarized media, given by (assuming the quasi-
neutrality of the plasma)

∇ · E = 0
∇ · B = 0
∂tB + ∇ × E = 0

− ϵ0∂tE + 1
µ0

∇ × B = j

(2.38)

where ϵ0 = 8.854 ×10−12 F m−1 and µ0 = 4π × 10−7 N A−2 are respectively the vac-
uum electric permittivity and magnetic permeability.

Eq. (2.36) and (2.38) can be used for general quasi-neutral plasma in local thermo-
dynamic equilibrium. In the next Chapter, we make additional simplifying assump-
tions to adapt them for the simulation of inductive plasma. Although these equations
give satisfactory results for particular flow configurations, it should be noted that
they fail for non-equilibrium regimes. The main focus of this work being the study of
hybridized discontinuous Galerkin methods for ICP, the more detailed plasma models
will not be explored.
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2.4 Conclusions on the plasma governing equations
In this Chapter, we have presented the outline of the usual method to derive the

plasma governing equations starting from the Boltzmann equation at thermochemical
equilibrium. However, these equations still need to be particularized to the case of
axisymmetric ICP, which is done in the next Chapter. Although the presented model
has a restrained range of application, one must keep in mind that simulating the
plasma flow of an ICP facility using a high order numerical solver is a challenging
task. These assumptions are considered in order to ease the solver implementation.
In the future, one should consider more detailed thermochemical models to extend
the validity of the ICP numerical solver.
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Model for inductively
coupled plasma

3

We present the physcial model for the axisymmetric LTE inductively coupled plasma
(ICP). It is similar to the one used in legacy ICP solver (see for instance Boulos
[12], the group of Proulx [40], Vanden Abeele [106] or Magin [75]). It is based
on an axisymmetric description of the hydrodynamic and electric fields, and the
thermochemical equilibrium description of the plasma presented in Chapter 2. We first
particularize Eq. (2.36) to the axisymmetric LTE ICP configuration. Then, we present
the non-dimensional form of the ICP equations, and discuss the non-dimensional
parameters.

3.1 Axisymmetric ICP equations
The general system of governing equations describing the flow of a quasi-neutral

plasma at equilibrium has been presented in Chapter 2, in Eq. (2.36) and (2.38). We
particularize them for the case of axisymmetric and LTE inductively coupled plasma
following a series of additional assumptions listed below.

Collision-dominated and thermal plasma The plasma is dominated by intermolec-
ular collisions. Consequently, the mean free path of the molecules is very small,
and the continuity hypothesis applies. Moreover, the collisions are assumed
to bring all species at a common equilibrium temperature. One must keep
in mind that thermal non-equilibrium state has been observed in ICP for low
pressure or high induction frequency (see e.g. [82, 81, 116]). Indeed, if the
pressure is too low, the collisions between the particles are not sufficient for
all species to thermalize. On the other hand, a too high induction frequency
prevents the electrons to return to their equilibrium state. In the future, thermal
non-equilibrium configurations should be investigated.

Quasi-neutrality The plasma characteristic length ℓ is assumed to be much larger
than the Debye length λD, i.e. the length at which thermal fluctuations break
charge neutrality,

ℓ ≫ λD =
√
ϵ0kBTe

neq2
e

, (3.1)

with ϵ0 the air electric permittivity, kB the Boltzmann constant, Te the electronic
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temperature, ne the electron number density and qe the electron charge. Con-
sequently, the plasma is considered quasi-neutral, and q ≃ 0 to a high level of
accuracy.

No displacement current The plasma oscillation frequency fp is defined by

fp = qe

2π

√
ne

ϵ0me

(3.2)

where qe, me and ne are respectively the electron charge, mass and number
density, and ϵ0 is the vacuum electric permittivity. The coil induction current
produces electromagnetic waves with characteristic wavelength

λELM = 1
f

√
ϵ0µ0

(3.3)

with µ0 the vacuum magnetic permeability and f the current frequency. The
electromagnetic waves break charge neutrality and create oscillations of the
electrons in the plasma with frequency fp. In this work, we assume that f ≪ fp,
which implies that the electron return sufficiently fast to equilibrium to neglect
the effect of electromagnetic waves. On the other hand, the torch characteristic
length LC is much smaller than the electromagnetic wavelength λELM . We thus
fully neglect the displacement currents in Maxwell equations.

Axisymmetry Assuming axisymmetry excludes 3D plasma modes and coil-induced
torch asymmetry [10]. Moreover, the coil is modeled as a series of infinitely
thin parallel wires, although in experimental set-up, the coils are organized as
slabs surrounding the torch. The electric field from these loops is determined
analytically [57].

Non-radiative plasma No radiation is considered here, although radiation can have
a significant impact on heat transfer and temperature profile caused by the
medium itself at sufficiently high pressure [65, 60]. Having a reliable radiation
model requires a relevant spectral database and expensive computations [105],
but should definitely be included in future developments.

Neglected gravity It is assumed that gravity plays a negligible role in ICP flows.

No elemental de-mixing Elemental de-mixing is the separation of chemical ele-
ments by diffusion. This phenomenon is both present for equilibrium and
non-equilibrium flows [98], but is ignored here.

Steady-state We assume the flow to be at steady-state. In general, ICP flows are
unsteady due to possible the Kelvin-Helmholtz instabilities in the shear layer of
the jet and the fast temporal variation of the different fields introduced by the
high oscillation frequency of the induction current. However, we disregard these
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effects, and average all variables over one oscillation period of the induction
current. Then, in these time averaged equations, we find a steady solution
(∂t = 0). Note that we show the temporal derivative in our developments to
keep the argument general.

Local thermodynamic equilibrium The ICP computations are assumed to be at
local thermodynamic equilibrium (LTE). The thermodynamic properties of the
gas are computed using a linear interpolation in a thermodynamic table of
states built using the Mutation++ library [103]. This table primary serves
to retrieve the fluid density, internal energy, viscosity, thermal and electric
conductivity. Note that the LTE assumption is reasonable for the jet exhausting
the torch but questionable for the plasma in the torch (see for instance the work
of Mostaghimi [82] or Zhang [116]).

Unmagnetized plasma Although plasma in ICP can be weakly magnetized, we
assume that it is not the case in the model developed here. Consequently, the
transport properties of the plasma are not affected by the magnetic field.

3.1.1 Hydrodynamic equations

Considering the previous hypotheses, the set of axisymmetric Navier-Stokes equa-
tions averaged over one oscillation period of the frequency is

∂tw + ∂z (Fz
c − Fz

v) + ∂r (Fr
c − rFr

v) = S + Fr
v − Fr

c

r
(3.4)

where the vector of conservative variables is w =
(
ρ ρvz ρvr ρvθ ρe+ ρ ||v||2

2

)T
,

the total flux is split in a convective and diffusive parts F = Fc − Fv, the convective
flux vector is given by

F z
c =

(
ρvz ρv2

z + p ρvzvr ρvzvθ ρvzH
)T
,

F r
c =

(
ρvr ρvrvz ρv2

r + p ρvrvθ ρvrH
)T
,

(3.5)

the diffusive flux vector is given by

F z
v =

(
0 τzz τzr τzθ

∑
j τzjvj − qz

)T
,

F r
v =

(
0 τrz τrr τrθ

∑
j τrjvj − qr

)T
,

(3.6)

and the source terms are given by

S =
(
0 FL

z
p+ρv2

θ−τθθ

r
+ FL

r
−ρvrvθ+τrθ

r
PJ

)T
. (3.7)
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with ρ the density, v = (vz vr vθ) the velocity vector, p the static pressure, H =
ρe + ρ ||v||2

2 + p the specific total enthalpy and q = −k∇T the heat flux, with T the
temperature of the fluid. The components of the symmetric viscous stress tensor in
cylindrical coordinates are given by

τzz = 2η
(
∂zvz − 1

3∇ · v
)

τrr = 2η
(
∂rvr − 1

3∇ · v
)

τzr = τrz = η (∂rvz + ∂zvr) τrθ = η
(
∂rvθ − vθ

r

)

τzθ = η∂zvθ τθθ = 2η
(
vr

r
− 1

3∇ · v
)

(3.8)

where η is the fluid dynamic viscosity and ∇ · v = ∂zvz + ∂rvr + vr

r
is the divergence

of the velocity field. Finally, the effective Lorentz force FL and the power dissipated
by joule heating P J are linked to the real and imaginary parts (resp. EIm

I , ERe
I ) of

the induced electric field EI (see Eq. (3.33))

FL
z = σe

4πf
[
EIm

I ∂zE
Re
I − ERe

I ∂zE
Im
I

]
,

FL
r = σe

4πf

[
EIm

I

1
r
∂r(rERe

I ) − ERe
I

1
r
∂r(rEIm

I )
]
,

P J = σe

2
[
(EIm

I )2 + (ERe
I )2

]
(3.9)

where σe is the electron electric conductivity of the plasma and f is the frequency of
the induction current. The electron electric conductivity σe is assumed to dominate
the ionic electric conductivity and therefore is the only electric conductivity appear-
ing in the equations. The transport properties at equilibrium are computed using
Mutation++ [103]. The form of the effective Lorentz force and power dissipated by
Joule effect is justified below, when discussing the electric field equation.

3.1.2 Electric field equations for axisymmetric ICP

We now simplify Maxwell equations in vacuum for quasi neutral plasma Eq. (2.38)
for axisymmetric ICP. Neglecting the displacement currents, these equations become

∇ · E = 0 (3.10a)
∇ · B = 0 (3.10b)
∂tB + ∇ × E = 0 (3.10c)
1
µ0

∇ × B = j. (3.10d)
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The induced magnetic field being divergence-free, it is possible to write B as the
rotational of a potential vector A, effectively substituting Eq. (3.10b) by

B = ∇ × A. (3.11)

It is then possible to write Eq. (3.10c) as

E = −∇ϕ− ∂tA, (3.12)

where ϕ is a scalar potential. Using Eq. (3.11) and (3.12), Ampere’s law Eq. (3.10d)
becomes

1
µ0

[∇ × (∇ × A)] = j (3.13)

which can be expanded as

1
µ0

[∇ (∇ · A) − ∆A] = j. (3.14)

The magnetic potential vector A and electric potential ϕ are not uniquely defined. In
fact, the gradient of a scalar function can be added to A and ϕ without changing the
magnetic and electric field. Indeed, it is easy to show that, if A′ and ϕ′ are defined as
a function of the gradient of a scalar quantity Λ such that

A′ = A + ∇Λ
ϕ′ = ϕ− ∂tΛ

(3.15)

then, the following equalities hold

B = ∇ × A = ∇ × A′,

E = −∇ϕ− ∂tA = −∇ϕ′ − ∂tA′.
(3.16)

This indetermination is called gauge freedom. We can choose the gauge so the
vectors A and ϕ obtain specific properties that simplify the equations. In this work,
we use the Coulomb gauge, which is a gauge that has the property that A becomes
divergence free

∇ · A = 0, (3.17)

Eq. (3.10d) becomes
∆A = −µ0j. (3.18)

Finally, the Gauss law Eq. (3.10a) can be written as

∆ϕ = −∂t (∇ · A) = 0 (3.19)

due to the Coulomb gauge. Consequently, the set of Maxwell’s equations in vacuum
for quasi-neutral plasma can be written using the magnetic potential vector A and
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the electric potential ϕ (considering the Coulomb gauge ∇ · A = 0) as

∆ϕ = 0
B = ∇ × A
E = −∇ϕ− ∂tA
∆A = −µ0j

(3.20)

The electric field E is then split into an electrostatic ES part, due to the electromag-
netic force between charged particles, and induced EI part due to the response of
the conductive plasma to the oscillating current generated by the coil

E = ES + EI . (3.21)

where
EI = −∂tA
ES = −∇ϕ (3.22)

Similarly, the current j is split into the current produced by the coil jC , which is
known from the coil configuration, and the diffusion current produced in the plasma
jP

j = jP + jC (3.23)

Deriving Eq. (3.14) with respect to time and taking into account the definition of the
induced electric field and the generalized Ohm’s law (we kept the same notations as
in Eq. (2.33)), one gets the following set of equations for the electric field

∆EI − ∇ (∇ · EI) = µ0 (jC + jP )
ES = −∇ϕ
∆ϕ = 0
jP = σE − j∇

j∇ =
∑

i,j∈S

niqiDij

( ∇pj

nkBTh

− yjp

nkBTh

∇ ln p+ kh
Tj

∇ lnTh + ke
Tj

∇ lnTe

)

E = ES + EI

(3.24)

One can reduce this system to solve an equation for the induced electric field and
the Laplace equation for the electric potential, the other quantities being easy to
reconstruct from the latter

∆EI − ∇ (∇ · EI) = µ0 [σ (EI − ∇ϕ) − j∇]
∆ϕ = 0

(3.25)

This equation has to be solved coupled to the Navier-Stokes equations, as σ and
j∇ depend on hydrodynamic quantities such as pressure, temperature or diffusion
velocities. Eq. (3.25) is relatively general, but has a high computational cost, as it
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requires to solve the Laplace equation for ϕ and one equation for each electric field
component in addition to the Navier-Stokes equations. Consequently, Eq. (3.25) is
simplified for an axisymmetric configuration. Indeed, since ∂θϕ = 0, the electrostatic
field is located in the axisymmetric plane

ES = −∇ϕ = −∂zϕ ez − ∂rϕ er (3.26)

with r and z the radial and axial position. On the other hand, the induced electric
field is in the azimuthal direction since the coil electric field is along eθ

EI = E ′
I eθ (3.27)

Because ∂θ = 0, the azimuthal component of j∇ is null. Ohm’s law then becomes (re-
calling that, in the direction where no spatial gradient occur, the electric conductivity
is mainly determined by the electrons, i.e. σ ≃ σe as in Eq. (2.34))

jP,z = σES,z − j∇,z

jP,r = σES,r − j∇,r

jP,θ = σeEI,θ

(3.28)

with jP = (jP,z jP,r jP,θ), σ the plasma and σe the electron electric conductivity
respectively. The Laplace equation for the electric potential should still be solved,
subsequently determining the current in the plasma plane. However, to avoid solving
for the Laplace equation, it is commonly assumed in axisymmetric ICP that the
electrostatic field is ambipolar. The ambipolar assumption states that the electrostatic
field ES produced by the moving charges is such that no diffusion current occur in
the axisymmetric plane

jP,z = jP,r = 0. (3.29)

The electrostatic field can then be computed using the equations

σES,z − j∇,z = 0
σES,r − j∇,r = 0.

(3.30)

Because the induction current is sinusoidal, we use in this work the phasor no-
tations. The coil being represented by a series of infinitely thin parallel wires, the
current produced by the coil is given by

jC = IC exp(i2πft)
Ncoil∑

l=1
δ(x − xl)eθ, (3.31)

where IC is the current magnitude, f the frequency, t the time, Ncoil the coil number
of turns, x the position vector, xl the lth coil position vector and i is the imaginary
unit. The δ(x) function is 0 everywhere except when x = 0, where δ = 1. The induced
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electric field also writes
E ′

I = EI exp(i2πft). (3.32)

and the equation for the induced electric field Eq. (3.25) becomes

∂2
zzEI + 1

r
∂r (r∂rEI) − EI

r2 − i2πfµ0σeEI = i2πfµ0r
Ncoil∑

k=1
δ(x − xk) (3.33)

The induced electric field can be split into a contribution from the plasma, EP and
the coil, EC

EI = EC + EP , (3.34)

governed respectively by the equations

∂2
zzEC + 1

r
∂r(r∂rEC) − EC

r2 = 2iπfµ0IC

nr∑

l=1
δ(x − xl) (3.35)

and
∂2

zzEP + 1
r
∂r(r∂rEP ) − EP

r2 = i2πfµ0σe (EC + EP ) (3.36)

Eq. (3.35) has an analytical solution, which can be found for instance in Jang et.
al.[57]

EC =
Ncoil∑

l=1
ifµ0IC

√
r0

r

[
2E2(kl)

kl

− E1(kl)
( 2
kl

− kl

)]
(3.37)

where E1(k) and E2(k) are respectively the complete elliptic integrals of the first and
second kind

E1(k) =
∫ π

2

0

dθ√
1 − k2 sin2(θ)

E2(k) =
∫ π

2

0

√
1 − k2 sin2(θ) dθ,

(3.38)

with kl is defined as

kl = 4rr0

(z − zl)2 + (r + r0)2 . (3.39)

r0 is the coil radius and zl is the axial position of turn l. Eq. (3.52) is solved by using
the expression for the coil current Eq. (3.37). In practice, the plasma and coil electric
fields are split into a real and imaginary part, thus splitting Eq. (3.36) in a real and
imaginary part as well. Note that Eq. (3.4) and (3.36) are solved monolithically using
the HDG method. They are coupled through σe, which appears in the source term of
both equations, and which depends on temperature and pressure.

We can now justify the fact that only EI , and not ES, appear in the source terms of
the Navier-Stokes equations. Indeed, the average volume power dissipated by Joule
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effect over one oscillation period is given by

PJ = f
∫ 1/f

0
j · Edt

= f
∫ 1/f

0
jθEθdt

= f
∫ 1/f

0
σeℜ{EI exp(2iπft)}dt

= f
∫ 1/f

0
σe

1
2
(
|EI |2 + ℜ{E2

I exp(2iπft)}
)
dt

= σe

2 |EI |2

(3.40)

Following a similar rationale, by developing the time averaged Lorentz force

FL = f
∫ 1/f

0
j × Bdt (3.41)

one can show that the FL has the form given in Eq. (3.4), only displaying the induced
electric field. Although the electrostatic field does not explicitly appear in the Navier-
Stokes system, it plays a role in the computations of the transport properties of the
plasma. It is determined in the Mutation++ library, and is not explicitly solved in
the developed code.

The electric field model presented here is very convenient for solving axisymmetric
ICP equations, as it allows to avoid solving for the Laplace equation for the electric
potential. However, when considering three dimensional flows, the complete system
Eq. (3.25) should be solved.

3.2 Non-dimensional form of ICP equations
Due to the low-mach nature of ICP flows, the distinct eigenvalues λl of the projected

convective operator of the Navier-Stokes equations in direction n have very different
orders of magnitude

λ1 = v · n + c, λ2 = v · n, λ3 = v · n − c, (3.42)

with v the velocity vector, c the speed of sound such that c ≫ v · n. A system of equa-
tion with a large disparity in its eigenvalues is badly conditioned. In order to mitigate
this drawback, two solutions exists. First, the system can be non-dimensionalized
using characteristic variables, reducing the eigenvalues discrepancy. Then, the nu-
merical discretization can be adapted to improve the system conditioning. The latter
will be discussed later.
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3.2.1 Reference and dimensionless quantities

In order to make the ICP system of equation dimensionless, a set of reference
quantities have to be defined. They are listed in Table 3.1. These quantities will serve
to define the dimensionless numbers governing the equations. In the following, the
dimensionless quantity corresponding to X is denoted with X̃. They are defined as
X̃ = X

X0
, where X0 is the corresponding reference value.

Reference
variable

Description
Value for

p0 = 5 ×103Pa
T0 = 104K

Value for
p0 = 105Pa
T0 = 104K

L0 Torch diameter. 1.6 ×10−1 m 1.6 ×10−1 m

ρ0 Density 7.83 ×10−4 kg m−3 1.72 ×10−2 kg m−3

ρin(Tin, p0) Inlet density 4.96 ×10−2 kg m−3 1.00 kg m−3

Ain Inlet area 2.435 ×10−3 m2 2.435 ×10−3 m2

Q Mass flow rate 1.6 ×10−2 kg s−1 1.6 ×10−2 kg s−1

e0 Internal energy 5.11 ×107 J kg−1 4.22 ×107J kg−1

k0 Heat conductivity 2.34 W m−1K−1 1.47 W m−1K−1

η0 Dynamic viscosity 1.80 ×10−4 Pa s 2.45 ×10−5 Pa s

σ0
Electric
conductivity

3.07 ×103 S m−1 2.84 ×103 S m−1

u0 = Q/(ρinAin) Velocity. 1.32 ×102 m s−1 6.57 m s−1

t0 = L0/u0
Hydrodynamic
time

1.21 s 2.44 ×10−2 s

E0 Electric field 104 V m−1 104 V m−1

µ0
Magnetic
permeability

4 π × 10−7 H m−1 4 π10−7× H m−1

Tab. 3.1.: List of reference values for ICP flows used for dimensional analysis. Unless specifi-
cally marked, they are evaluated using the reference pressure p0 and temperature
T0. The reference velocity is computed from the inlet flow rate Q, the inlet area
Ain and the inlet density ρin. The value listed here reflects typical ICP cases in the
Plasmatron ICP facility at VKI.
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3.2.2 Hydrodynamic dimensionless equations

The hydrodynamic dimensionless equations are given in their vector form as

∂t̃ρ̃+ ∇̃ · (ρ̃ṽ) = 0

∂t̃ (ρ̃ṽ) + ∇̃ · (ρ̃ṽṽ + Eu p̃) = 1
Re∇̃ · τ̃ + Im F̃L

∂t̃

(
ρ̃ẽ+ Ek 1

2 ρ̃||ṽ||2
)

+ ∇̃
(
ρ̃ẽṽ + Ek 1

2 ρ̃||ṽ||2ṽ − Eu Ek p̃ṽ
)

= Ek
Re∇̃ · (τ̃ · ṽ) − 1

Re Pr∇̃ ·
(
k̃∇̃T̃

)
+ Jn P̃J

(3.43)

Eq. (3.43) contains several dimensionless numbers, which are listed below.

Reynolds number The Reynolds number Re is the ratio of inertia over viscous
forces:

Re = ρ0u0L0

η0
. (3.44)

For an ICP facility, Re ∼ 100 and the flow is laminar.

Mach number The Mach number represents the ratio of the velocity u over the
speed of sound c

Ma = u

c
(3.45)

It is an indicator of the compressibility of the fluid, meaning the variation of
density with respect to pressure. In the case of ICP, the Mach number is very
low (Ma ∼ 0.01), and the flow can be considered incompressible, meaning that
the density variation is only due to temperature effects.

Euler number The Euler number Eu is a comparison of the pressure force and
inertia.

Eu = ∆p0

ρ0u2
0

(3.46)

where ∆p0 is a reference gauge pressure. The Euler number scales the pressure
gradient term in the dimensionless momentum equation. However, in the case
of ICP, pressure is almost constant everywhere, with ∆p0 ≃ 50 Pa, making
pressure forces marginal compared to inertia.

Prandtl number the Prandtl number Pr assesses the ratio between the heat trans-
ferred due to momentum diffusivity and due to thermal diffusion

Pr = η0e0

T0k0
. (3.47)

In this work, Pr ∼ 0.4, and ICP is dominated by thermal diffusive effects.
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Eckert number the Eckert number Ek represents the ratio of kinetic energy over
the internal energy

Ek = u2
0
e0

(3.48)

In ICP, the thermal energy dominates the kinetic one, and Ek ≪ 1.

Magnetic interaction parameter The magnetic interaction parameter Im is evalu-
ating the ratio of the effective Lorentz force over inertia. It is defined by

Im = σ0E
2
0

fρ0u2
0

(3.49)

where f is the coil induction frequency. If f is sufficiently high, Im ≪ 1 and the
effective Lorentz force can be neglected.

Joule number the Joule number Jn represents the ratio of the heat produced by
Joule effect over the heat transported by convection.

Jn = σ0E
2
0L0

ρ0u3
0

(3.50)

In ICP, Jn ≥ 1 for the Joule heating to be effective. Otherwise, the torch is
quenched.

Swirl angle Although it does not appear explicitly in the governing equation, the
swirl angle S is the angle between the vz and vθ at the injection such that

tan(S) = vθ

vz

(3.51)

3.2.3 Electric dimensionless equation

The non-dimensional form of the plasma electric field equation Eq. (3.36) is given
by

∆̃ẼP − ẼP

r̃2 iNind σ̃
(
ẼC + ẼP

)
= 0 (3.52)

where Nind is the induction number, representing the ratio of the skin depth δ over
the characteristic length L0 of the ICP

Nind = 2πfµ0σ0L
2
0 =

(
L0

δ

)2
(3.53)

with

δ =
√

1
2πfµ0σ0

. (3.54)
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and is a measure of the penetration depth of the induced currents in the plasma.

3.3 Computational domain, boundary and initial
conditions

The ICP configuration is a multi-domain problem as shown in Fig. 3.1. It contains
two subdomains: the torch (ICP part), where Maxwell and Navier-Stokes equations
are solved, and the outer region (electromagnetic part), governed by Maxwell equa-
tions. The computational domain is accompanied by a set of boundary and initial
conditions listed below.

Maxwell + N-S

Maxwell

Probe

Opening

O
pening

Far electric field

Fa
r

el
ec

tr
ic

fie
ld Isotherm

al No slip isothermal Isothermal

C
oflow

Fig. 3.1.: Schematic representation of the computational domain of an ICP. Conceptually,
the Maxwell and Navier-Stokes equations are solved inside the torch (blue region),
while only the Maxwell equations are solved outside (red region), making the ICP
simulation a multi-domain problem. The boundary conditions have been marked.

The boundary conditions displayed in Fig. 3.1 are listed here.

Vanishing far electric field Since the electric field vanishes far away from the torch,
the computational electric field has to be sufficiently extended. At the boundary
of the outer region, EP = 0.

Symmetry axis the center line is an axis of symmetry. ∂rp = 0, ∂ruz = 0, ur = 0,
∂rT = 0 and EP = 0.

Openings The chamber is cut to reduce the computational costs. Openings are
placed on its boundaries (top and right end of the chamber domain). p = p0

No-slip wall isothermal The wall below the annular injector and the torch upper
walls are isothermal. T = Twall and u = 0.
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Inflow The inflow is annular, uz = Uin, ur = 0 and T = Tinlet.

Stabilizing co-flow A stabilizing coflow is blown from the chamber upper left wall.
The purpose of this coflow is to remove the Kelvin-Helmholtz instabilities
occurring in the shear layer of the jet in order to reach steady-state. This
technique has been used in legacy codes [107, 75, 35]. T = Twall, u = ucoflowez

ICP and Maxwell interface At the interface between Maxwell and ICP domains, the
boundary conditions as shown in Fig. 3.1 are applied on the hydrodynamic
fields. For the electric field, the normal electric field diffusive flux is conserved
across the interface.

∇ERe,NS
p · nNS = ∇ERe,MAX

p · nMAX

∇EIm,NS
p · nNS = ∇EIm,MAX

p · nMAX
(3.55)

where ERe
p and EIm

p represent the real and imaginary parts of the electric field,
the superscripts NS and MAX label the Navier-Stokes and Maxwell domains,
and n is the outward pointing normal with respect to a given subdomain.

The initialization of the flow does not have an impact on the steady solution.
However, if the flow is not well initialized, the solver convergence may be slowed
down or become impossible. We present now the initial solution used for every field
in every ICP computations performed with the HDG code in this work.

Velocity field Uniform initial velocity v = Uinez.

Temperature field The temperature is initialized as follows:

• If z > z3, or r > Rout, T (z, r) = Twall.

• Else if z ∈ [z1; z2], T (z, r) = T12(r) = Tinitial + r2

R2
in

(Twall − Tinitial)

• Else if z < z1, T (z, r) = Twall−T12(r)
z2

1
z2 − 2Twall−T12(r)

z1
z + Twall

• Else if z ∈ [z2, z3]: T (z, r) = T12(r) + (z−z2)2

(z3−z2)2 (Twall − T12(r))
The choice of z1, z2 and z3 should be such that the initial data match the
boundary conditions.

Pressure and electric field The pressure and electric fields are initialized as EP =
0 p = p0. Note that the electric field is initialized the same way in both
domains.

We would like to emphasize that the initial conditions on temperature have been
specifically designed to match the boundary conditions. If this is not the case,
the solution becomes oscillatory close to the boundary, resulting is non physical
temperatures and the crash of the solver. Other configurations are possible, but the
boundary conditions should be always respected by initial data.
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3.4 Conclusions on the ICP model
We have presented the ICP model used in the subsequent simulations. Although the

modeling is relatively simple, as many physical phenomena are disregarded, it gives a
sufficiently complex framework to test the high-order numerical approach, especially
for the capture of the large temperature gradients close to the facility isothermal
walls. However, many of these assumptions should be dropped in the future. In
particular, unsteady and 3D computations should be investigated in order to match
the new experimental requirements (e.g. the semi-elliptical nozzle). The ambipolar
assumption should also be removed and the Laplace equation for the electrostatic
field should be solved. Finally, non-equilibrium chemistry should be investigated.
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High-order discretization
4

We now present a new monolithic hybridized discontinuous Galerkin (HDG) method.
We particularize it to the ICP case. This Chapter is divided in two parts. In the
first one, we present the general discretization procedure for the HDG multi-domain
method for any conservation law and link it to the ICP problem. This is one of the
main contributions of this thesis, as this is the first time HDG has been used for a
multi-domain solver. In addition, we present the numerical fluxes, compatibility
conditions between subdomains and boundary conditions. Secondly, we discuss
solution strategies for solving the multi-domain method at steady-state. We discuss
the damped inexact Newton-Raphson procedure and the iterative algorithm for
keeping the power constant in the facility. The developments presented here have
been published by the author (see [25]).

4.1 Hybridized discontinuous Galerkin method for
multi-domain problems

We present an extension of the classic HDG method to multi-domain problems, tak-
ing into account the conditions existing at the interface between physical subdomains.
We first introduce the model problem. We then define the spatial discretization and
the functional spaces. We discretize the weak formulation of the model problem using
the multi-domain HDG method. This discretization procedure implies the definition
of the local set of degrees of freedom (DOFs), containing the information about the
solution u and its gradient q at the element level, and the global set of DOFs λ along
the inter-element trace. Numerical fluxes at the element interface and compatibility
conditions at the subdomain interfaces also have to be defined. The developments
are structured similarly to the work of Nguyen et al. [88, 90] and Woopen et al. [114,
112]. At first, the physics of ICP is set aside, as the method is valid for any kind of
conservation law. Then, we link the general formulation of the multi-domain HDG
method to the case of ICP.
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4.1.1 Multi-domain model problem statement

Multi-domain problems can be modeled as a collection of non-overlapping sub-
domains governed by their own physics. Consider a given subdomain Ωl ⊂ RD of
dimension D with boundary ∂Ωl. A set of conservation equations, boundary and
initial conditions are defined over Ωl as

∂twl(u) + ∇ ·
(
Fl

c(u) − Fl
v(u,∇u)

)
= Sl(u,∇u), x ∈ Ωl, t > 0

ul = ul
bc, x ∈ ∂Ωl

d, t > 0
Fl

v · n = Fl
v,n,bc, x ∈ ∂Ωl

n, t > 0
F l,l′(ul,∇ul,ul′ ,∇ul′) = 0, x ∈ γl,l′ , t > 0, l ̸= l′

ul(t = 0) = Ul, x ∈ Ωl

(4.1)

where ul is the vector of unknowns and wl is the set of conservative variables. Fc

and Fv are the convective and diffusive physical flux functions respectively and S
represents the source terms. ∂Ωd ⊂ ∂Ω and ∂Ωn ⊂ ∂Ω are the part of the frontier
where Dirichlet and Neumann boundary conditions apply respectively. ubc and Fv,n,bc

are boundary conditions on the solution and on the diffusive flux normal to the
boundary respectively. U represents an initial field function. γl,l′ = ∂Ωl ∩ ∂Ωl′ is the
common frontier to the subdomains l and l′. Finally, compatibility and conservation
conditions are applied at the interface between the subdomains Ωl and Ωl′ . They are
represented by the function F .

We have illustrated Eq. (4.1) particularized to the ICP model in Fig. 4.1. This
problem has been divided in two parts: one where the Maxwell and Navier-Stokes
equations are solved, inside the torch and the chamber, and one where only Maxwell
equations apply, outside the facility. We show the conservative w and unknown u
vectors for each subdomain, and the conservativity condition F across their boundary.
We also have listed in Table 4.1 the mapping of the symbols found in Eq. (4.1)
and in the ICP problem. The boundary and initial conditions can be retrieved from
Section 3.3. Note that, for the Navier-Stokes equations, we use the set of unknowns
u = (p vz vr vθ T ). This choice is mainly motivated by the use of an LTE table of state
constructed using p and T . It is then easy to retrieve the usual conservative quantities
w = (ρ ρvz ρvr ρvθ e+ ρ ||v||2

2 ) using the LTE table. Note also that, outside of the torch,
the air is considered to be insulating, meaning that the right hand side of Eq. (3.36)
vanishes in this region. Finally, EC and EP are split into a real and imaginary parts,
and so is Eq. (3.36).

4.1 Hybridized discontinuous Galerkin method for multi-domain
problems
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Maxwell + N-S (Ω1)

Maxwell (Ω2)

u1 =
(
p vz vr vθ T ERe

p EIm
p

)

w1 =
(
ρ ρvz ρvr ρe + ρ

2 ||v||2 ρvθ 0 0
)

u2 =
(
ERe

p EIm
p

)

w2 = 0
F l,l′ = ∇E1

P · n1 + ∇E2
P · n2 = 0n1

n2

Fig. 4.1.: Schematic representation of an ICP as a multi-domain problem. Only half of the
domain is represented. The two subdomains are Ω1, the Navier-Stokes + Maxwell
subdomain, and Ω2 the Maxwell subdomain. The conservative variables wl and ul

have been shown for each domain, with ρ the density of the fluid, vz and vr the
radial and axial velocity components, T the temperature, e the internal energy, p
the pressure, EP = ERe

P + iEIm
P the plasma electric field, with ERe

P and EIm
P its

real and imaginary parts. The operator F has also been displayed, representing
the conservation of the electric field diffusive flux across subdomains.
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Eq. (4.1) NS + Maxwell (Eq. (3.4) + Eq. (3.36)) Maxwell (Eq. (3.36))

ul
(
p vz vr vθ T ERe

P EIm
P

)T (
ERe

P EIm
P

)T

wl
(
ρ ρvz ρvr ρvθ ρe+ ρ ||v||2

2 0 0
)T (

0 0
)T

Fl
c (Fc 0 0)T , Fc is given in Eq. (3.5) /

Fl
v

(
Fv ∇ERe

P ∇EIm
P

)T
, Fv is given in Eq. (3.6)

(
∇ERe

P ∇EIm
P

)T

Sl




rS
2πfµ0σe(EIm

C + EIm
P ) − ERe

P

r

−2πfµ0σe(ERe
C + ERe

P ) − EIm
P

r2


, S is given in Eq. (3.7)


−ERe

P

r2

−EIm
P

r2




F l,l′
(

∇ERe,NS
P · nNS + ∇ERe,MAX

P · nMAX

∇EIm,NS
P · nNS + ∇EIm,MAX

P · nMAX

)

ul
bc u evaluated using the boundary values in Section 3.3

Fl
v,n,bc Fv · n, evaluated using ubc and the gradient boundary values in Section 3.3

Ul u, evaluated using the initial values as described in Section 3.3

Tab. 4.1.: Mapping table between the notations of Eq. (4.1) and the notations of the ICP
problem composed of the N-S + Maxwell subdomain (Eq. (3.4) + Eq. (3.36))
and the Maxwell subdomain (Eq. (3.36)). ρ is the density of the fluid, vz, vr

and vθ are the axial, radial and azimuthal velocity components respectively, T
is the temperature, e is the internal energy, p is the pressure, ERe

P and EIm
P are

the real and imaginary parts of the electric field respectively and r is the radial
position. n represents the outward pointing normal to the boundary of a specific
subdomain. The superscripts NS and MAX label the Maxwell + Navier-Stokes
and the Maxwell domain respectively.
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4.1.2 Spatial discretization

Let us consider a domain Ω composed of Nd non-overlapping sub-domains Ωl:

Ω =
Nd⋃

l=1
Ωl. (4.2)

Each sub-domain Ωl is divided in a collection T l of N l
e non-overlapping elements.

The tesselation T of the complete domain Ω is defined as

T =
Nd⋃

l=1
T l, (4.3)

with boundary ∂T . This tesselation forms the mesh of the problem. In this work, we
employ only conformal mesh, meaning that any boundary face of an element can
only be connected to a single other element. The subdomain mesh skeleton Γl is
defined as

Γl = {e : e = Ki ∩Kj; ∀Ki, Kj ∈ T l, Ki ̸= Kj}. (4.4)

We also define the set of traces on the interface between sub-domains Γl,l′ as

Γl,l′ = {e : e = K ∩K ′;K ∈ T l, K ′ ∈ T l′ , l ̸= l′} (4.5)

In the following, we define Γ as the collection of all inter-element traces

Γ = Γl ∪ Γl,l′ ,∀l ̸= l′ (4.6)

and by Γ̄ the set containing all the traces located at the sub-domain interfaces

Γ̄ =
⋃

l,l′
Γl,l′ ,∀l ̸= l′. (4.7)

4.1.3 Functional spaces

HDG searches an approximation of the solution u of Eq. (4.1) and its gradient
q = ∇u on a functional subspace of the square integrable functions of the domain
L2(Ω). To do so, it also uses a set of hybrid degrees of freedom on the mesh skeleton,
noted λ in the following. They represent the solution on the element interface. If
Pp(K) represents the set of polynomials of degree at most p on K, we chose the
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following sets to represent u, q and λ respectively

Wh =
{
w ∈ L2(Ω) : w|K ∈ Pp(K),∀K ∈ T

}

Vh =
{
v ∈ L2(Ω) : v|K ∈ (Pp(K))D ,∀K ∈ T

}

Mh =
{
µ ∈ L2(Γ) : µ|e ∈ Pp(e),∀e ∈ Γ

}
(4.8)

with D the spatial dimension of the problem. These functional sets contain all
functions that are square integrable polynomial of degree at most p on each element or
interface. In general, these functions are discontinuous across the element interface,
which is very convenient for DG-like method. Indeed, it is possible to represent
discontinuous solutions across the element interfaces. Moreover, this feature allows
to use a different polynomial order on each element. This concept is not explored
here, but could definitely be used in further improvements of ICP simulations. These
sets being finite dimensional, it is possible to find a basis composed of a finite number
of linearly independent functions. It is common practice in DG-like methods, such as
HDG, to choose basis functions in the set of functions that have a compact support on
the elements. This choice greatly simplifies subsequent developments. Consequently,
let us define the set of functions belonging to Wh and Vh but have a compact support
on a given element K and the set of functions belonging to Mh but that have a
compact support on a given element e. We name these sets respectively WK,h, VK,h

and Me,h

WK,h = {w(x) ∈ Wh : x /∈ K ⇒ w(x) = 0,∀K ∈ T }
VK,h = {v(x) ∈ Vh : x /∈ K ⇒ v(x) = 0,∀K ∈ T }
Me,h = {µ(x) ∈ Mh : x /∈ e ⇒ µ(x) = 0,∀e ∈ Γ}

(4.9)

Because WK,h, VK,h and Me,h are finite dimensional, one can find a basis of p linearly
independent functions for each of these spaces. They will be denoted in the following
by

φK,i ∈ WK,h, i ∈ {1, 2, ..., p}, ∀K ∈ T
τ K,i ∈ VK,h, i ∈ {1, 2, ..., p}, ∀K ∈ T
µe,i ∈ MK,h, i ∈ {1, 2, ..., p}, ∀e ∈ Γ

(4.10)

By considering φK,i and τ K,i for all K ∈ T and µe,i for all e ∈ Γ, it can be shown that
a basis for Vh, Wh and Mh is retrieved respectively. An example of basis functions are
the Lagrange polynomials of degree at most p. In this work, Dubiner’s basis is used
[32] for every set. Consequently, the solution uh, solution gradient qh and the hybrid
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variables λh are given by

uh =
∑

K∈T

p∑

i=1
uK,iφK,i

qh =
∑

K∈T

p∑

i=1
qK,iτ K,i

λh =
∑

e∈Γ

p∑

i=1
λe,iµe,i.

(4.11)

with uK,i, qK,i and λe,i the solution, solution gradient and hybrid degrees of freedom
at element K and facet e respectively. In HDG, or any other DG-like method, defining
the global functional basis in terms of local functions allows to simplify the discrete
system, as will be discussed in the following. An illustration of nodal DOFs for HDG
is given in Fig. 4.2. In the following, we refer the DOFs associated to the elements (u,
q) by the local DOFs, while the DOFs associated with the element trace (λ) are the
hybrid DOFs.

u1, q1 u2, q2

λ
eK1

K2

φK1

φK2µe

Fig. 4.2.: Illustration of the nodal degrees of freedom used in the HDG method for two
triangular elements of order 2. Examples of basis functions are also shown. The
nodes on the elements K1 and K2 (marked with ◦) are associated with the local
DOFs u and q. At the interface e between elements, a set of hybrid DOFs λ (marked
with •), is defined. The purpose of the latter is to decouple the element DOFs
(u, q), effectively reducing the number of globally coupled DOFs (λ) compared
to classic DG. Note also that the basis functions are not continuous across the
elements (see φK1 and φK2) and that the lement trace has its own functional space
(µe).

Before presenting the discretization, some of the operators and symbols used in
the following are defined. The jump operator at the interface between elements is

[[u]] = u+ · n+ + u− · n−, (4.12)

where the + and − label the two elements sharing the edge over which the jump is
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computed, n represents the outward pointing normal to an element. We also define
the following volume and surface integration operators respectively:

(a, b)K =
∫

K
ab dV,

⟨a, b⟩∂K =
∫

∂K
ab dS.

(4.13)

4.1.4 Discrete problem

The HDG method adapted to a multi-domain problem consists in, for each subdo-
main Ωl ∈ Ω tesselated using the set T l ∈ T , finding an approximation to the solution
of Eq. (4.1) by solving, for (uh,qh,λh) ∈ Vh × Wh × Mh and for any test function
(v, τ , π) ∈ Vh ×Wh ×Mh, the following problem:

(
∂twl

h − Sl
h, v

)
T l

−
(
Fl

h,c − Fl
h,v,∇v

)
T l

+
∑

K∈T l

〈
Hl, v

〉
∂K

= 0
(
ql

h, τ
)

T l
−
(
ul

h,∇τ
)

T l
+

∑

K∈T l

〈
λl

h, τ · n
〉

∂K\∂Ωl
+
〈
ul

bc, τ · n
〉

∂Ωl
= 0

〈
[[Hl]], π

〉
Γl

+
Nd∑

l′=1
l′ ̸=l

⟨F̃ l,l′ , π⟩Γl,l′ = 0

(4.14)

where the subscript h means that a quantity is evaluated using uh, qh and λh, the
superscript l denotes the domain and Nd is the number of subdomains inside Ω.
H is the numerical flux function, i.e. an approximate consistent evaluation of the
convective and diffusive physical fluxes at the interface used to stabilize the method.
Eq. (4.14) is very similar to classic HDG. However, the third equation contains an
additional term, which is the core of the multi-domain method presented in this
work

Nd∑

l′=1
l′ ̸=l

⟨F̃ l,l′ , µ⟩Γl,l′ (4.15)

The operator F̃ is responsible for the exchange of information between subdomains
Ωl and Ωl′. In general, F̃ is an approximation of F , the actual compatibility or
conservativity condition existing between the subdomains. Both the numerical flux
functions H and F̃ are discussed more thoroughly in the following.

Because the sets Vh, Wh and Mh are finite dimensional, as long as Eq. (4.14) is
verified for the basis functions, it is verified for all functions (v, τ , π) ∈ Vh ×Wh ×Mh.
In DG methods, we use the local bases as described in Eq. (4.10). Due to their
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compact domain, Eq. (4.14) becomes, for all K ∈ T , e ∈ Γ and i ∈ {1, 2, ..., p}
(
∂twK

h − SK
h , φK,i

)
K

−
(
FK

h,c − FK
h,v,∇φK,i

)
K

+
〈
HK , φK,i

〉
∂K

= 0
(
qK

h , τ K,i

)
K

−
(
uK

h ,∇τ K′,i

)
K

+
〈
λ∂K

h , τ K,i · n
〉

∂K0
+ ⟨ubc, τ K,i · n⟩∂Kbc

= 0

⟨[[H]], µe,i⟩e\Γ̄ + ⟨F̃ e, µe,i⟩e∩Γ̄ = 0

(4.16)

where the index K and e denote the restriction to element K ∈ T and e ∈ Γ
respectively. Note that the mapping given in Table 4.1 apply to Eq. (4.16). The
frontier of each element is ∂K = ∂K0

⋃
∂Kbc, where the boundary condition apply

on ∂Kbc and the part of the element frontier connected to another element is ∂K0.
The numerical flux function is represented by HK . They are both discussed in the
following for the ICP case.

Numerical flux function

The numerical flux function H is a cornerstone in high-order methods. The stability
and accuracy of the method strongly depends on its definition. It is usually split into
a convective Hc and a diffusive part Hv

H = Hc − Hv. (4.17)

In the case of classic implicit DG method, H is a function of the local DOFs from
neighboring elements, giving rise to a large globally coupled system. For HDG, it
is a function of the local and the hybrid DOFs, effectively making the latter the
only globally coupled DOFs. This results in a reduced system compared to DG. An
illustration of the classic and hybridized DG method is given in Fig. 4.3.
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u1, q1 u2, q2

H(u1, q1, u2, q2)
K1 K2

u1, q1

λ

u2, q2

H1(u1, q1, λ)
H2(u1, q1, λ)

K1 K2

Fig. 4.3.: Illustration of the numerical fluxes in the classic (top) and hybridized (bottom)
DG methods using two triangular elements of order 2. In the case of classic DG,
the numerical flux function is computed once per interface, directly relating the
local DOFs (u and q). For hybridized DG, the numerical flux function relates the
local DOFs and the hybrid ones λ.

Convective numerical flux ICP flows are incompressible, since Ma ≃ 0.01. In these
regimes, pressure cannot be updated easily [108], leading to a loss of accuracy
and unstable solvers. We use here a convective numerical flux specifically designed
for low-Mach regimes, belonging to the the Advection Upstream Splitting Method
(AUSM) family. The AUSM scheme was first presented in the seminal work of Liou
[73, 72, 71]. It is based on the splitting of the convective flux into a pressure part
and an upwind convective part. The resulting flux is designed to be central in the
low-mach number limit and upwind in the supersonic case. A simplified version of
AUSM for Ma → 0 has already been employed by Magin [75], where a pressure
diffusion term is added to the momentum transport flux. We adapted this simplified
version to the HDG method:

Hc,n(u,λ) = (ṁ+ ṁp)Ψλ − |ṁ|(Ψλ − ΨU) + P, (4.18)

where
Ψ =

(
1 v⊥ v∥ vθ e+ 1

2 ||v||2 + p
ρ

)T
, (4.19)
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with the ∥ and ⊥ superscript respectively denoting the perpendicular and parallel
components of a vector with respect to the normal direction to the facet, p is the
pressure, ρ is the density, e is the internal energy and v is the velocity vector. The
subscripts U and λ represent respectively the values in the element and on the facet,
ṁ = ρλv

⊥
λ is the mass flow rate, while mp = pU −pλ

Vp
is the pressure diffusion factor, with

Vp a preconditioning velocity, chosen as a characteristic velocity of the flow (in our

case, the inlet velocity). Finally, the pressure flux is defined as P =
(
0 pλ 0 0

)T
. In

order to express the convective numerical flux in the axisymmetric frame of reference,
one must multiply it by a rotation matrix

Hc =




1 0 0 0 0
0 nz −nr 0 0
0 nr nz 0 0
0 0 0 1 0
0 0 0 0 1




Hc,n (4.20)

with n = (nz nr 0)T the normal to the facet.
The diffusive numerical flux is discretized as follows

Hv(u, λ,q) = Fv(λ,q) · n + γ(h)(λ − u) (4.21)

where the definition of Fv for both subdomains can be retrieved from Table 4.1. The
penalization parameter γ depends on a local characteristic mesh size. γ has been
widely studied for DG methods (see for instance [55, 51, 34]). Based on these results,
we suggest a form of γ very close to the one proposed by Hillewaert [55]:

γ = C max
K∋f


 1

2V
∑

f∈K

A

 (4.22)

with f denoting the facet under consideration, K being an element sharing the facet,
C a multiplicative constant proportional to the physical diffusion processes (such as
viscosity, heat conductivity), A is the area of the facet (length in 2D), V is the volume
of the element (surface in 2D).

Imposing boundary conditions The boundary conditions are weakly imposed through
the numerical flux H(u,q,ubc,qbc), where ubc and qbc are respectively the boundary
condition and boundary condition gradient given in Section 3.3. If no BC is applied,
the value is copied from inside the domain (ubc = u and/or qbc = q). An illustration
is given in Fig. 4.4.
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u1, q1

H(u1, q1, ubc, qbc)
K1

(
ubc

qbc

)

Fig. 4.4.: Illustration of the boundary conditions. The numerical flux is computed exactly
like a bulk element, but it is evaluated using the various boundary conditions
instead of the hybrid unknowns and local gradients.

Compatibility and conservativity conditions between subdomains

The compatibility and conservativity conditions between neighboring subdomains
are treated in the third equation of the system given in Eq. (4.16). It contains an
additional term compared to single domain HDG taking into account the discretization
of the F operator, labeled here F̃ . This operator represents the conservation of a
physical flux across the interface and/or a compatibility condition. These two cases
are discussed below.

Conservative condition across sub-domains If F represents the conservativity of a
flux across the interface, then the discretization F̃ is the conservation of the associated
numerical flux across that interface. In the case of ICP, the conservation of the normal
diffusive electric flux gives:

F̃ =




HNS
v,ERe

p
+ HMAX

v,ERe
p

HNS
v,EIm

p
+ HMAX

v,EIm
p


 (4.23)

where Hv,ERe
p

and Hv,EIm
p

represents the diffusive numerical flux of the real and
imaginary electric field respectively and the superscripts MAX and NS represent the
Maxwell and the Maxwell + Navier-Stokes subdomains respectively. The complete
expression of Hv,ERe

p
and Hv,EIm

p
can be found in Eq. (4.21).

Compatibility condition across sub-domains In other physical problem, F may rep-
resent a compatibility condition, such as a jump or the continuity of the solution
across the interface. We give an example of the electric field normal to a wall En with
surface charge σs. It is well known that the condition

εEn − ε′E ′
n = σs (4.24)
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If these compatibility constraints are added to conservative conditions, the hybrid
unknowns have to be doubled at the interface for the problem to be well-posed. In
the case of ICP, if there is a normal component of the electric field at the interface
between subdomains, F̃ becomes

F̃ =




HNS
v,ERe

p
(λNS) + HMax

v,ERe
p

(λMAX)

HNS
v,EIm

p
(λNS) + HMax

v,EIm
p

(λMAX)

εNSENS
n (λNS) − εMAXEMAX

n (λMAX) − σs




(4.25)

where the various symbols keep their definition from Eq. 4.23 and where we have
emphasized the doubling of the hybrid unknown by associating half of them to each
subdomain (λNS is associated to the Navier-Stokes + Maxwell domain, λMAX is
associated to the Maxwell domain). We have illustrated this case in Fig. 4.5 for
general conservation laws.

ul, ql

λl λl′

ul′, ql′

Hl(ul, ql, λl) Hl′(ul′ , ql′ , λl′)C = 0
Hl − Hl′ = 0

K l K l′

Fig. 4.5.: Illustration of conservativity and compatibility conditions. K l and K l′ are elements
belonging to two separate domains Ωl. When the numerical flux H is conserved
across the domains interface and there exists a compatibility condition C = 0
between the variables of the two domains, the hybrid unknowns are doubled (λl

and λl′) in order to impose all interface conditions.

Note that, in the case of axisymmetric ICP, the azimuthal electric field is con-
served across the interface between the Maxwell and ICP domains, but there is no
compatibility condition.

4.2 Solution strategy
Eq. (4.16) is solved implicitly using Newton’s method and eliminating the local

variables in order to obtain a global system for the hybrid unknowns. The resulting
hybrid solution λ is used to reconstruct the element-wise (u, q) solutions using direct
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inversion of small local matrices. We discuss here in detail the solution procedure.

4.2.1 Steady-state solution strategy

Since we are interested in steady-state computations, a damped inexact Newton
iteration is used in this work. It consists in adding a fictitious temporal term to the
steady-state form of Eq. (4.16) (∂t = 0). The role of this pseudo-temporal term is to
ease the convergence towards the steady-state, especially when the initial data are
far from the steady solution. When the CFL is sufficiently large, this term becomes
negligible, and the newton method is retrieved. This is translated in the first equation
of Eq. (4.16) by replacing ∂twK by a finite difference approximation, leaving the
other systems unchanged

(
δwK

h

τK

− SK
h , φK,i

)

K

−
(
FK

h,c − FK
h,v,∇φK,i

)
K

+
〈
HK , φK,i

〉
∂K

= 0

(qK , τ K,i)K − (uK ,∇τ K′,i)K + ⟨λ∂K , τ K,i · n⟩∂K0
+ ⟨ubc, τ K,i · n⟩∂Kbc

= 0
⟨[[H]], µe,i⟩e\Γ̄ + ⟨F̃ e, µe,i⟩e∩Γ̄ = 0

(4.26)

where all symbols have their definition in Eq. (4.16), τK = CFL× hK/vK is a local
time step associated to element K and xk = xk−1 + δx, where k denotes the current
Newton iteration. It is defined via a global Courant-Friederichs-Lewy number, the
characteristic size hK and speed vK of each element. In this work,

hK

vK

= VK∫
∂K λmaxdS

, (4.27)

where λmax is the maximal eigenvalue of the hyperbolic operator and VK is the
volume (or area in 2D) of the element K. The choice of the CFL is based on the
evolution of L2 norm of the residual R of the system. It is given by

CFLn = min
(
CFL0

(
||R||02
||R||n2

)α

, CFLmax

)
(4.28)

where the index 0 denotes the initial value of a quantity, and CFLmax is a CFL upper
bound. α is an exponent factor governing the evolution of the CFL. Note that we
did note take into account the eigenvalues of the diffusive operator. They could be
considered in the computation of the CFL by choosing between the maximum value
of the convective operator and the diffusive one. This approach has not been tested
but could have a stabilizing effect on the solver.

Eq. (4.26) can be cast in a generic form using a nonlinear operator Ñ

Ñh(xh; yi) = 0 (4.29)
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where xh = (λh,uh,qh) is the vector of unknowns and yi = (φi, τ i, µi) is the vector
containing the basis functions of the approximate functional spaces. We then linearize
Eq. (4.29) and solve it

Ñ ′
h(xk

h; yi)δxk
h = −Ñh(xk

h; yi), (4.30)

where the Ñ ′ is the Jacobian matrix. Although solving Eq. (4.30) is similar to the
Newton method, it is not, since it contains a damping term. In the limit of τK → ∞,
the Newton method is retrieved

N ′
h(xk

h; yi)δxk
h = −Nh(xk

h; yi), (4.31)

where now N and N ′
h are respectively the residual and the Jacobian matrix of

Eq. (4.16) at steady state without the damping term. The iterative procedure is started
from an initial guess of the solution x0

h. From there, the solutions xk+1 are computed
by solving successively Eq. (4.30) using xk as an initial guess: xk+1 = xk + δxk. The
algorithm is stopped when the norm of the residual is sufficiently low. In order to
further stabilize the solver, the update is limited such that

xk+1 = xk + βδxk, β ∈]0, 1] (4.32)

In practice, β = 0.8 is sufficient to have a stable and relatively fast solver.
Following this procedure, Eq. (4.30) can be written for HDG as:



A B R
C D S
L M N




︸ ︷︷ ︸
Ñ ′

h
(xk

h
;yi)

δxk
h︷ ︸︸ ︷


δQ
δU
δΛ


 =



F
G
H




︸ ︷︷ ︸
−Ñh(xk

h
;yi)

, (4.33)

Eq. (4.33) can be rewritten in two sets of equations:

Σ
(
δQ
δU

)
=
(
F
G

)
−
(
R
S

)
δΛ, with Σ =

(
A B
C D

)
(4.34)

and (
L M

)(δQ
δU

)
+NδΛ = H (4.35)

Eq. (4.34) is called the local system, because Σ is block diagonal, with each block
associated to an element. Therefore, it is possible to eliminate the local variables
from Eq. (4.35) by directly inverting Σ, leading to a global system for the hybrid
unknowns:

(
N −

(
L M

)
Σ−1

(
R
S

))
δΛ = H −

(
L M

)
Σ−1

(
F
G

)
(4.36)
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Then, the linear system given in Eq. (4.36) is solved with the PETSc library [6]. A
GMRES method is employed with at most 50 basis vectors. An ILU preconditioner
with 4 levels of fill-in is used. The solution algorithm to solve the full HDG system
is given in Algorithm 1. An interesting feature of the multi-domain solver is that it
can be solved in exactly the same manner as single-domain HDG. The only difference
lies in the assembly of the system. Even there, the only real difference is due to the
coupling term between subdomains.

4.2.2 Newton-Raphson method and global power strategy

In ICP facilities, part of the power supplied to the generator is dissipated in the form
of Joule heating in the plasma. Let us call this part Ptarget. There is no straightforward
relation linking the current IC to be imposed in the coil and Ptarget in the experimental
facility. It is also not possible to know beforehand the current to be imposed in the ICP
simulation at the coil in order to dissipate Ptarget. However, if Ptarget is not maintained
during the computations, the torch is quenched [12]. To avoid this, an iterative
procedure for maintaining a constant power in the facility inspired by legacy ICP
solvers [107, 106] is described here.

Instead of solving the Navier-Stokes equations given in Eq. (3.5), we solve for a
slightly different formulation of the problem

∂tρ+ ∇ · (ρv) = 0
∂t (ρv) + ∇ · (ρvv) + ∇p− ∇ · τ = γ FL

∣∣∣
Ic=1 A

∂t

(
ρe+ 1

2ρ||v||2
)

+ ∇ ·
(
ρev + 1

2ρ||v||2v + pv − τ · v − q
)

= γ PJ |Ic=1 A

(4.37)

On the other hand, the electric field equation solved is

∆ EP |Ic=1 A =
EP |Ic=1 A

r2 + i2πfµ0σe

(
EC |Ic=1 A + EP |Ic=1 A

)
(4.38)

In these systems, the subscript IC = 1 A means that a quantity is evaluated for an
induction current IC = 1 A. Consequently, the computed electric field EP |Ic=1 A is the
electric field in the plasma when EC is produced by IC = 1 A. In order to match the
desired power dissipated in the facility Ptarget, the scaling factor γ is introduced. If
the power dissipated in the facility when Ic = 1 A is defined by

P |Ic=1 A =
∫

NS

σe

2 || EC |Ic=1 A + EP |Ic=1 A ||2dV (4.39)

then we define γ as

γ = Ptarget

Ptot

, (4.40)
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meaning that

Ptarget = γ P |Ic=1 A =
∫

NS
γ
σe

2 || EC |Ic=1 A + EP |Ic=1 A ||2dV (4.41)

Reaching the target power is thus equivalent to multiply EP |Ic=1 A and EC |Ic=1 A by
√
γ

in the Navier-Stokes equations. This is translated in Eq. (4.37) by the multiplication
of the effective Lorentz force FL and joule dissipation PJ terms by γ. Consequently,
the procedure for maintaining the power at Ptarget in the facility is the following:

1. Compute the coil electric field EC |Ic=1 A for IC = 1 A.

2. Compute γ for the initial solution using Eq. (4.40).

3. Solve for one Newton iteration for IC = 1 A and by multiplying FL
∣∣∣
Ic=1 A

and
PJ |Ic=1 A by the value of γ obtained previously.

4. At the end of the Newton iteration, P |Ic=1 A is evaluated using the solution and
another γ is computed using Eq. (4.40).

5. Return to step 3 until convergence occur.

6. Once the system has converged, the true EC and EP can be retrieved with

EC = √
γ EC |Ic=1 A

EP = √
γ EP |Ic=1 A

(4.42)

This procedure is integrated in Algorithm 1.

4.2.3 Comparison with previous solution procedure and
algorithm

The solution procedure employed with the HDG code (Fig. 4.6) is quite different
from the previous solvers such as COOLFluiD (Fig. 4.7). In the HDG code, the system
of equation (ICP + Maxwell) is solved in a fully coupled manner. On the other
hand, the FV solver decouples the solutions of Maxwell and Navier-Stokes equations,
solving them separately by assuming that all hydrodynamic quantities are frozen
while solving the electric field, and vice-versa. While the latter procedure is easier to
implement, it takes more Newton iterations to converge (on the order of thousand of
iterations) than the monolithic solver (on the order of 10-100 iterations).
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Navier-Stokes
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Power
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Fig. 4.6.: Diagram of the solution procedure of ICP simulations using the HDG method. The
Navier-Stokes and Maxwell equations are solved in a fully coupled manner.

Initial
Conditions

Navier
Stokes

Electric
Conductivity Maxwell

Converged?Power
Ratio

OUT
NO YES

Fig. 4.7.: Diagram of the solution procedure of ICP simulations using the COOLFluiD FV
solver. The system is solved in a decoupled manner: one system is frozen while the
other is solved. The process is repeated until convergence occurs. This diagram
was inspired by [100]

Finally, the complete solution procedure for the HDG method is given in pseudo-
code form in Algorithm 1.
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Algorithm 1 Solution procedure for multi-domain HDG

Set all simulation parameters
Initialize λh, wh, qh;
Compute EC |Ic=1 A using Eq. (3.37) and IC = 1 A.
Compute P |Ic=1 A and γ using Eq. (4.39) and Eq. (4.40);
while ||Residual||2 > Tolerance do

for l = 1, ..., Nd do
for i = 1,..., Ne do

Assemble local system (Eq. (4.34)) of subdomain l;
- Navier-Stokes and Maxwell subdomain: Eq. (4.37) and Eq. (4.38).
- Maxwell subdomain: Eq. (4.38).
Solve local system of subdomain l;
Store local solution of subdomain l;
Assemble global system (Eq. (4.36));

end for
end for
Solve global system;
Update λh, wh, qh;
Compute P |Ic=1 A and γ using Eq. (4.39) and Eq. (4.40);

end while
Multiply EC |Ic=1 A and EP |Ic=1 A by

√
γ to obtain EC and EP ;

4.3 Conclusions of the multi-domain HDG
monolithic solver development

In this Chapter, we developed a new monolithic HDG solver and applied it to
the ICP problem. It appears that the HDG method is well suited for this task, as
it inherently possess a conservation condition for determining the hybrid variables.
These conservation conditions can be modified at the boundary between subdomains
to account for the relationship linking the two physics. In the same way, compatibility
conditions can also be imposed. The key concept is to have as many hybrid unknowns
as there is compatibility and conservativity conditions. This concept is of capital
importance for the problem to be well-posed. Finally, although we restricted this new
method to ICP applications, it can be easily applied to any system of conservation
laws. The idea is to adapt the governing equations, numerical fluxes, conservation
and compatibility conditions according to the physics at play.

4.3 Conclusions of the multi-domain HDG monolithic solver
development

67



Verification and validation
5

We present a numerical study of the ICP simulations. We first perform a convergence
study using a manufactured solution. Next, we study the dependence of the solution
on the mesh refinement and on the order of the HDG method. This analysis allows
to find a mesh that is accurate while keeping a reasonable computational costs.
We then study the impact of the coflow stabilizing the plasma jet. The HDG code
is also compared to previous ICP computations performed using a finite volume
solver (COOLFluiD). Finally, the convergence towards steady state using the Newton
monolithic solver is discussed.

This Chapter is an important contribution of this thesis, as the various numerical
studies performed here were never formally reported in the case of ICP, and in
particular in the case of high-order methods. With this analysis, we want to prove
that the HDG high-order code is reliable for ICP simulations. The comparison with
COOLFluiD and the convergence study have been published by the author [25].

5.1 Convergence study
Finding an analytical solution for the complete ICP problem in order to perform a

convergence study is challenging. Consequently, we use the method of manufactured
solutions, which we describe in the following. Let us consider a non-linear equation
that can be written in the form

F(u) = 0 (5.1)

Manufacturing a solution is to modify Eq. (5.1) so that it is solved for a given solution
u∗. The modified problem is

F(u) = F(u∗). (5.2)

F(u∗) is then used as an additional source term in the equation. In our case, the
equation

F(u) = ∂tw(u) + ∇ · F(u,∇u) − S(u,∇u) = F(u∗) (5.3)

is solved. With this method, it is possible to verify a code implementation on any test
solution, at the price of an additional source term, F(u∗).

The manufactured solution for ICP equation is tested on an axisymmetric domain
delimited by two concentric cylinders of radii R1 = 0.486 m and R2 = 0.972 m
respectively and length L = 0.486 m. The region inside the first cylinder is governed
by the full ICP equations (Maxwell and Navier-Stokes). The region delimited by the
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radii R1 and R2 are ruled by Maxwell’s equations only (Fig. 5.1).

II : Maxwell equations

I : ICP equations

R2

R1

Fig. 5.1.: Illustration of the manufactured solution problem: the central cylinder is governed
by Navier-Stokes and Maxwell equations, while the outer cylinder is governed by
Maxwell equations.

The solutions chosen for the various fields are:

p = ∆p0f(z, r) + p0 T = Tmin + (Tmax − Tmin) f(z, r)
vz = u0f(z, r) Ep = E0f(z, r)(1 − i)
vr = u0f(z, r) vθ = u0f(z, r)

(5.4)

with p0 = 5000 Pa, ∆p = −10 Pa, u0 = 100 m s−1, Tmin = 350 K, E0 = 1 V m−1 and

f(z, r) =
(
rz

RL

)2
exp

(
− z

L
− r

R1

)
(5.5)

We consider an ideal gas, with specific gas constant R = 287 J kg−1 K−1. The heat
conductivity is k = 3.54 W m−1 K−1, the dynamic viscosity is µ = 1.25 ×10−4Pa s and
the heat capacity ratio is γ = 1.46. The electric field produced by the coil has been
turned off (EC = 0). The electric conductivity of the air is supposed constant in
the ICP domain (σ = 3804.7 S m−1), but null in the Maxwell domain. The induction
frequency f = 0.37 MHz. Note that the chosen manufactured solution cannot be
represented by a polynomial basis. This way, a convergence study with arbitrary
order can be performed.

High-order methods using polynomial degree p converge in the L2 norm to the
analytical solution u∗ of the problem with order p+ 1, meaning that

L2(u − u∗) =
[∫

V
(u − u∗)2dx

] 1
2

= O
(
hp+1

)
(5.6)

where h is the characteristic mesh size. In Fig. 5.2 and in Fig. 5.3 the convergence
order is retrieved for the solution in both domains. Note that the mesh used is
quadrangular and structured. For sufficiently high polynomial order and number of
elements, the round-off errors dominate and the convergence stalls.

5.1 Convergence study 69



10−3 10−2
10−15

10−13

10−11

10−9

10−7

10−5

L
2

(p
−

p∗ )[
-]

p = 1
p = 2
p = 3
p = 4

10−3 10−2

10−11

10−9

10−7

10−5

10−3

L
2

(v
z

−
v

∗ z
)[

-]

10−3 10−2

10−11

10−9

10−7

10−5

10−3

h

p + 1 [m]

L
2

(v
r

−
v

∗ r
)[

-]

10−3 10−2
10−13

10−11

10−9

10−7

10−5

10−3

h

p + 1 [m]

L
2

(T
−

T
∗ )[

-]

10−3 10−2

10−11

10−9

10−7

10−5

10−3

h

p + 1 [m]

L
2

(v
θ

−
v θ

∗ )[
-]

Fig. 5.2.: Convergence of the L2 norm of the error on the pressure p, velocities vz, vr, temper-
ature T and azimuthal velocity vθ in the ICP domain as a function of the mesh size
h. The quantities have been made dimensionless using their characteristic values.
The thick lines have a slope p + 1 and serve as comparison with the expected order
of convergence.
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Fig. 5.3.: Convergence of the real and imaginary parts of the plasma electric field ERe
P ,

EIm
P fields respectively in the Maxwell + Navier-Stokes (NS) and Maxwell (MAX)

domains as a function of the mesh size h. The quantities have been made dimen-
sionless using their characteristic values. The thick lines are of slope p + 1 and
serve as comparison with the expected order of convergence.

5.2 Mesh and order dependence study
We consider an ICP flow with the following characteristics

• P = 100 kW (power dissipated in the facility)

• p0 = 10 000 Pa (background pressure)

• f = 0.37 MHz (induction frequency)

• Q = 16 g s−1 (mass flow rate)
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• S = 20◦ (swirl angle)

• air mixture with 11 species

and with a geometry given in Fig. 5.4.

127 mm 50 mm

486 mm 385 mm

75 mm
5 mm

25 mmSTAG
TC PF

•
(0, 0)

Fig. 5.4.: Geometry of the ICP torch. The red lines represent the locations where the mesh
and order independence studies are performed. TC is for "torch center", STAG is
for "stagnation line" and PF stands for "in front of the probe".

We have conducted the mesh and order dependence studies on various fields
at specific locations (red lines in Fig. 5.4) on two realistic cases representative of
actual ICP flows in Appendix A, where the reader will find the complete analysis. In
this Section, we give only the main conclusions. These cases have the same input
parameters, representative of actual ICP flows. However, one has a probe in the
chamber, the other is in freestream conditions. The polynomial dependence was
performed on three meshes, from coarse to refined, using polynomial order from 1
to 4. As a general rule, the solution becomes order independent for p ≥ 3 for every
mesh, although some profiles are very well captured by polynomials of second degree
(even p = 1). From there, we performed the mesh dependence study on p = 3 and
p = 4. The conclusion is univocal: mesh independence is reached for p = 3, no
matter the level of refinement. With the objective of saving computational resources,
a natural choice is to use p = 3 with the coarsest mesh. However, before choosing the
mesh, two important quantities need to be assessed: the convergence of the probe
total heat flux and the power ratio in the facility.

The effect of the mesh refinement and polynomial order on the power ratio γ,
which is the square of the scaling factor of the electric field, in the ICP facility is given
in Fig. 5.5. The results obtained at p = 3 and p = 4 are similar. Moreover, at these
orders, γ is almost mesh independent.
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Fig. 5.5.: Evolution of the power ratio γ as a function of the mesh element number N for
different polynomial orders p for the probe (left) and freestream cases (right).

On the other hand, the mesh and order dependence study of the probe heat flux is
given in Fig. 5.6. The heat flux is the most accurate for order 4 polynomials, where it
does not change anymore with respect to mesh refinement.

0.4 0.6 0.8 1
·104

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

·106

N [-]

q
[W

m
−

2
K

−
1 ]

p = 1
p = 2
p = 3
p = 4

Fig. 5.6.: Normal heat flux q measured at the tip of the probe as a function of the number of
elements N .

In light of all the previous discussions, we chose the coarse meshes given in Fig. 5.7
for the subsequent simulations with polynomial reconstruction of degree 4. On the
contrary of legacy finite volume solvers, the mesh is fully unstructured and requires
few elements. It is only structured near the boundary layer regions, where the velocity
and temperature gradients are the steepest. The mesh size in the boundary layer near
the probe is of the order of 10 µm, which is more or less 10 times greater than what is
used with finite volumes. We tried coarser boundary mesh without success. However,
this increased mesh size near the wall is non negligible, especially when considering
3D computations. A solution would be to increase the order of the solution next to
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the boundary layer, while keeping a lower order on the rest of the domain. However,
we leave these investigations for future work.

Fig. 5.7.: Mesh used in the simulations. It contains is an unstructured mix of quads and
triangles at p = 4. The probe case has only 4013 elements (top) while the
freestream case has 3055 elements (bottom).

5.3 Impact of the coflow in steady simulations
Previously, we introduced the stabilizing coflow in the chamber. However, this

coflow is not present in experimental ICP. It is only added in numerical simulations
to remove the Kelvin-Helmholtz instabilities or other unsteady behaviour at the torch
exit for the steady solver to converge. It is important to note that, from our experience,
it was impossible to obtain a steady solution with our high-order ICP simulations if the
coflow was not applied. Although not rigorously physical, steady-state computations
are computationally cheaper than their unsteady counter part, and already give an
overview of the ICP flow features. However, the coflow may have a significant impact
on the hydrodynamic fields. Consequently, we assess its influence on the probe and
freestream ICP cases (see Section 5.2).

The formal definition of the coflow χ is

χ = Ublow

Uin

(5.7)

where Uin is the inlet average velocity and Ublow is the velocity of the gas blown in
the chamber at the inlet temperature. We found that, below χ = 0.16, no steady
solution could be found using the steady solver employed. The mesh used is the one
determined during the mesh and grid independence study, with polynomial order 4.
We also turned off the swirl component of the velocity.
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5.3.1 Impact of the coflow in the probe case

The hydrodynamic fields along the stagnation line in front of the probe are not
affected by the coflow (Fig. 5.8). The pressure is mildly affected, but it has no
significant impact on the flow.
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Fig. 5.8.: Variation of the pressure difference ∆p, axial velocity component vz, temperature
T and radial gradient of the radial velocity ∂rvr profiles along the stagnation line
for the probe case with respect to the coflow χ. ∆z represents the distance from
the probe tip. The mesh used is given in Fig. 5.7, with p = 4.
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The radial profiles in the torch were investigated and were found to be unaffected
by the coflow. Indeed, the coflow being injected inside the chamber, it has a very
limited impact upstream from its injection zone. On the other hand, discrepancies
in the pressure and velocity profiles occur on the radial profile in the jet (Fig. 5.9).
Since the characteristic gauge pressure (∆p ≃ 3 Pa) is very small compared to the
background pressure of the facility (10 000 Pa), and the temperature profile is not
affected, the transport properties of the plasma are not altered by the numerical
coflow. On the other hand, the large discrepancies in the axial velocity profile have
an impact only above the torch radius (r = 8 cm), which is not a region of interest for
experimental measurements. The radial velocity profile is the most affected. However,
the magnitude of the radial velocity is so small compared to the axial one that it
does not really impact the hydrodynamics. The gauge pressure profiles presents
oscillations at large coflow at a radial distance r = 8 cm. It maybe a resolution
problem in the shear layer. However, it has a limited impact on the flow due to the
very small gauge pressure.
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Fig. 5.9.: Variation of the pressure difference ∆p, axial velocity component vz, temperature
T and radial gradient of the radial velocity ∂rvr profiles along the radial direction r
at 35 mm from the probe front for the probe case with respect to the coflow χ. The
radial profile extends from the centerline (axis of symmetry) to twice the radius of
the torch 2R = 16 cm. The mesh used is given in Fig. 5.7, with p = 4.

The heat flux at the tip of the probe is almost not impacted by χ, with a variation
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of at most ≃ 2% (Fig. 5.10).
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Fig. 5.10.: Heat flux at the tip of the probe q as a function of the coflow used χ. The mesh
used is the coarse one given in Fig. 5.7, with p = 4.

5.3.2 Impact of the coflow in the freestream case

In the freestream case, as in the probe case, the flow inside the torch is unaffected
by the coflow. The impact on the radial profiles in the jet is given in Fig. 5.11. The
conclusions are the same as for the probe case. Pressure oscillations occur in the
shear layer, around r = 8 cm. However, the gauge pressure is so low that it has
practically no impact on the transport properties and the flow field. The strongest
influence of the coflow is once again on the velocity profiles. Since the discrepancies
mainly occur in the region outside of the torch radius, it has no real impact on the
region where experimental measures are performed. Just like for the probe case, the
radial velocity profile is the most impacted.
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Fig. 5.11.: Variation of the pressure difference ∆p, axial velocity component vz, temperature
T and radial gradient of the radial velocity ∂rvr profiles along the radial direction
r at 35 mm from the probe front for the freestream case with respect to the coflow
χ. The radial profile extends from the centerline (axis of symmetry) to twice the
radius of the torch 2R = 16 cm. The mesh used is the coarse one given in Fig. 5.7,
with polynomials of order 4.

5.3.3 Concluding remarks

We studied the impact of the coflow on the steady state simulation of ICP flows.
We first realized that our steady state solver does not converge if a coflow χ of at
least 0.16 is applied in the chamber. However, the coflow does not have a significant
impact on the axial profiles along the stagnation line nor on the radial profile below
the torch radius. The heat flux at the tip of the probe is also little affected. However,
we suspect that the abscence of the coflow brings back unsteady behaviour in the
jet and the flow becomes unsteady, potentially impacting the hydrodynamic fields.
These considerations are left for future work, but the unsteady nature of ICP flows
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should be investigated.

5.4 Comparison of HDG and COOLfluiD codes for
ICP simulations

We now compare our HDG ICP code and the COOLFluiD finite volume solver.
COOLFluiD was created at the von Karman Institute for Fluid Dynamics by Lani [67].
It allows, among other features, to perform ICP simulations on multiple processors.
However, it is not a monolithic solver, the Maxwell and Navier-Stokes equations are
solved successively until convergence occur.

Another notable difference is the handling of the electric field boundary condition.
In HDG, the electric field domain is extended and canceled sufficiently far from the
torch. For COOLFluiD, the domain is restricted to the torch and chamber and the
integral boundary value for the electric field is used. It basically means that every cell
of the domain is considered as a current loop. The combined effect of those loops
dictates the electric field on the frontier of the domain. The advantage of the method
is a reduction of the computational domain, but it also greatly fills the jacobian of the
system, as the boundary condition depends on the electric field everywhere inside
the torch. We compare our code and COOLFluiD from on a test case representative
of the Plasmatron conditions with the following characteristics:

• p0 = 5000 Pa is the facility operating pressure,

• Q = 16 g s−1 is the mass flow rate,

• Twall = 350 K is the temperature of the incoming air and the temperature of the
walls of the facility,

• P = 100 kW is the power dissipated in the facility,

• f = 0.37 MHz is the coil induction frequency,

• air mixture with 11 species.

• No swirl angle.

• The coflow applied for HDG is χHDG = 0.2.

The dimensions of the torch are given in Fig. 5.4. A hemispherical (50 mm diameter)
probe is placed in the chamber along the torch axis for the probe case. The freestream
case is also investigated. We lowered the coflow to the minimum required for
obtaining stable simulations, but could not match the one from COOLFluiD, which is
χCF = 0.1 for the probe case and χCF = 0 for the freestream case.
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5.4.1 Probe case

We compare the results of the COOLFluiD and HDG codes along the stagnation
line, in front of the probe and in the torch center for the case with the probe.

Stagnation line

The pressure, temperature and axial velocity profiles obtained using HDG at order 4
and COOLFluiD on the stagnation line in front of the probe are given in Fig. 5.12.
They show a very good agreement between the two simulations.
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Fig. 5.12.: Comparisons of the axial velocity profile vz, the pressure difference ∆p and
temperature profile T along the stagnation line in front of the probe in the
Plasmatron for the HDG and COOLFluiD codes in the probe case. The stagnation
line extends from the probe tip to ∆z = 35 mm.

Probe front

The pressure, temperature and axial and radial velocity profiles obtained using HDG
at order 4 and COOLFluiD on the stagnation line in front of the probe are given in
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Fig. 5.13. There are some discrepancies in the pressure and velocity profiles, but
they are negligible. They may arise from the different coflows employed for the
simulations.
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Fig. 5.13.: Comparisons of the axial vz and radial vr velocity profiles, the pressure difference
∆p and temperature profile T along the radial direction at ∆z = 35 mm from the
probe front.

Torch center

The pressure, temperature, axial and radial velocity profiles and the electric field
obtained using HDG at order 4 and COOLFluiD on the stagnation line in front of the
probe are given in Fig. 5.14. The only remarkable difference lies withing the electric
field profiles.
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Fig. 5.14.: Comparisons of the axial vz and radial vr velocity profiles, the pressure difference
∆p, temperature profile T and real ERe

p and imaginary EIm
p parts of the electric

field along the radial direction at the torch center, at 24.3 cm from the torch inlet
for the probe case.

They match close to the centerline but discrepancies appear close to the torch
upper wall. The origin of this discrepancy is not well understood, but we can give
potential causes. First, the imposition of the boundary condition for the electric field
is very different in HDG, where the electric domain is extended, and in COOLFluiD,
where the electric field is computed using integral boundary values. Second, the
solution procedure is not the same. For HDG, the electric field is computed in a
fully coupled way, while in COOLFluiD the electric and Navier Stokes solvers are
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segregated. These possible causes are not explored here, but the difference in electric
field has no substantial impact on the hydrodynamic field.

5.4.2 Freestream case

We compare the results of the COOLFluiD and HDG codes in the jet and in the
torch center for the freestream case.

In the jet

The pressure, temperature and axial and radial velocity profiles obtained using HDG
at order 4 and COOLFluiD on the stagnation line in front of the probe are given in
Fig. 5.15.
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Fig. 5.15.: Comparisons of the axial vz and radial vr velocity profiles, the pressure difference
∆p and temperature profile T along the radial direction in the freestream jet at
83.6 cm from the torch inlet.

The gauge pressure is very close to the background pressure p0, so the oscillations
are not an issue. All other fields are matching very well. The maximal axial velocity
is not exactly the same. This might be due to the difference in coflows.
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Torch center

The pressure, temperature, axial and radial velocity profiles and the electric field
obtained using HDG at order 4 and COOLFluiD on the stagnation line in front of the
probe are given in Fig. 5.16. The same observations about the hydrodynamic and
electric fields as for the probe case can be made.
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Fig. 5.16.: Comparisons of the axial vz and radial vr velocity profiles, the pressure difference
∆p, temperature profile T and real ERe

p and imaginary EIm
p parts of the electric

field along the radial direction at the torch center, at 24.3 cm from the torch inlet
for the freestream case.

We were able to reproduce the results of a previous finite volume solver - COOLFluiD
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- using the HDG method. On the contrary of finite volumes, high-order method allow
to use a coarse, unstructured meshes, easing the use of the code.

5.5 Convergence history of the steady state
One important aspect of the ICP simulation is the convergence of the Newton

solver. Previous segregated algorithms required thousands of iterations to converge
to steady-state. In our case, with a monolithic approach, the L2 norm of the residual
for the freestream case described in Section 5.4 converges within 50 iterations (see
Fig. 5.17).
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Fig. 5.17.: Convergence history of the L2 norm of the residual R of the system. The CFL
and GMRES vectors per Newton iteration have also been displayed. The red line
shows the separation between the order 1 and order 4 simulations.

The solution strategy was the following: first, an order 1 simulation is run. Then,
starting from the obtained results, we simulate the ICP flow at order 4. This procedure
allows to reduce the number of high-order iterations, which are more expensive,
while making the solver more stable. We also displayed the number of GMRES vectors
per newton iteration and the evolution of the CFL number. The number of GMRES
vectors generally increases with the CFL, but is far from prohibitive (at most 13
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vectors).
The conclusion of this analysis is that the fully coupled solver is very advantageous

compared to the staggered one in terms of newton iterations. We were able to
perform order 4 ICP simulations on a laptop with single processor within more or less
60 newton iterations. This feature allows the HDG code to vastly outperform previous
solvers, which required thousands of Newton iterations to converge. A parallelization
strategy has to be considered in the future to fully take advantage of the HDG method
and further improve the computational performance.

Finally, one of the main drawbacks of the HDG solver is the filling requirements of
the ILU preconditioner. It demands 3 to 4 factor levels to be stable. The reason for
this is not totally clear, but we suspect that the combination of high-order methods
and stiff physics maybe the cause. To improve this problem, one may redesign of the
non dimensional form of the equations or to use a preconditioner better suited for
this application. These considerations are left for future work.

5.6 Conclusions
In this Chapter, we have performed numerical studies of ICP simulations. The

convergence study based upon a manufactured solution proved that the multi-domain
HDG method recovers the expected convergence orders. Then, for actual ICP cases,
one with a probe, one in freestream conditions, we studied the mesh and order depen-
dence of the solution. We concluded that, using a relatively coarse unstructured mesh
with polynomial order 4, the solution was mesh and order independent. However,
the mesh still needs to be structured in the vicinity of the boundary layer, with a
mesh size of 10 µm at the wall compared to 1 µm in the case of finite volume. This
difference may seem small, but if 3D cases are considered, it results in great economy
of degrees of freedom. We also studied the impact of the coflow on the hydrodynamic
fields and observed that it has practically no effect in regions of interest. Then, we
compared our results to the ones obtained via the COOLFluiD finite volume solver.
We concluded that the results for both simulations were matching, except for the
electric field in the torch. This difference maybe due to the way boundary conditions
are imposed in the two codes and the solution procedure. Finally, we analyzed the
convergence of the L2 norm of the residual for the HDG code, and highlighted that
the number of iterations for the HDG solver were low and the computational time was
fast, making the monolithic HDG code better suited than finite volume, segregated
solvers.
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Physical simulations of ICP
flows

6

This Chapter deals with the simulation of actual ICP cases. First, we present the
fields in the facility for the case described in Section 5.4. This gives an overview of
the general characteristics of the flow in an ICP with and without a probe. Next, we
give a parametric study of the test case with the probe. In particular, we analyze the
impact on the distribution of the power dissipated in the facility, on the total enthalpy
at the torch exit and along the stagnation line, and on the heat flux and boundary
layer thickness at the level of the probe.

Note that the stabilizing coflow velocity is the inlet velocity. This helps the solver
to converge faster towards steady-state without significantly perturbing the solution
in the torch and the jet, as shown in Section 5.3.

6.1 Fields in the torch at steady state
We now present an overview of the various fields in the torch for the freestream and

probe cases given in Section 5.4. The geometry of the simulation is given in Fig. 5.4.
We show the gauge pressure (the reason behind the display of the gauge instead of
the static pressure is discussed below), the temperature, the density, the velocity, the
volume power dissipated by Joule effect, the electric field and the Lorentz force. The
magnitude of the effective Lorentz force is displayed, and the streamline and Mach
number are also analyzed. For each picture, we have represented the position of the
coils with black disks. When possible, they have been represented for both the probe
and freestream cases. If not displayed, they are located at the same positions in both
cases.

Since pressure p is very close to the background pressure p0, the gauge pressure
∆p = p− p0 is shown in Fig. 6.1. Considering a background pressure p0 = 5000 Pa,
the steady solver predicts change in pressure of at most 1%. The flow is thus
incompressible in the sense that the density variation are not caused by pressure
variation. However, density, as seen below, varies due to the large temperature
gradients. Note also that a small increase in pressure is observed near the probe
stagnation point.
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Fig. 6.1.: Gauge pressure field ∆p for the case with a probe (top) and without a probe (bot-
tom) in the Plasmatron facility. The coils surrounding the facility are represented
by the black dots. The exact simulation parameters are shown in Section 5.4.

The temperature T varies greatly in the facility (Fig. 6.2), with large temperature
gradients occurring close to the isothermal wall boundaries (probe and the torch
walls). The largest temperatures are reached close to the axis of symmetry.

Fig. 6.2.: Temperature field T for the case with a probe (top) and without a probe (bottom)
in the Plasmatron facility. The coils surrounding the facility are represented by the
black dots. The exact simulation parameters are shown in Section 5.4.

ICP flows are subsonic and considered incompressible. The pressure, which is
constant almost everywhere in the facility, does not play a role in the density (noted
ρ) variation. However, ρ is not constant over the domain because of the large
temperature gradients (see Fig. 6.3). The largest density gradients occur near the
upper wall of the facility and in the shear layer.
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Fig. 6.3.: Density field ρ for the case with a probe (top) and without a probe (bottom) in the
Plasmatron facility. The coils surrounding the facility are represented by the black
dots. The exact simulation parameters are shown in Section 5.4.

The annular injection creates a fluid recirculation close to the inlet (Fig. 6.4). The
latter brings back a portion of the heated fluid towards the injector, stabilizing the
torch but also giving rise to large temperature gradients close to the left wall. The
other part of the heated fluid is convected in the chamber. In addition, the streamlines
are closed, meaning the behaviour of the fluid is quasi incompressible. Concerning
the Mach number (Fig. 6.5), the flow is subsonic everywhere in the facility, especially
in regions of high temperature. It is the highest close to the injection, the top wall
and in the shear layer, since it is the region where the flow is the coldest.

Fig. 6.4.: Streamlines for the case with a probe (top) and without a probe (bottom) in the
Plasmatron facility. The coils surrounding the facility are represented by the black
dots. The exact simulation parameters are shown in Section 5.4.

The axial velocity shows an acceleration of the fluid after the heating. This is due
to the thermal expansion: the hot air is less dense than the cold one, and the flow is
accelerated after being heated in order to conserve the mass flux in the torch.
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Fig. 6.5.: Mach number Ma for the case with a probe (top) and without a probe (bottom) in
the Plasmatron facility. The coils surrounding the facility are represented by the
black dots. The exact simulation parameters are shown in Section 5.4.

Fig. 6.6.: Axial velocity field vz for the case with a probe (top) and without a probe (bottom)
in the Plasmatron facility. The coils surrounding the facility are represented by the
black dots. The exact simulation parameters are shown in Section 5.4.

The volume power dissipated via Joule heating in the facility P is shown in Fig. 6.7.
The greatest volume power dissipation is located at equal distance from the torch
upper wall and the axis of symmetry. It corresponds to the region where the product
of the total electric field norm squared E2

tot and the electron electric conductivity σe

is maximal, i.e. where the coupling of the plasma and the electric field is maximal.
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Fig. 6.7.: Power field P for the case with a probe (top) and without a probe (bottom) in the
Plasmatron facility. The coils surrounding the facility are represented by the black
dots. The exact simulation parameters are shown in Section 5.4.

The norm of the total electric field, which is purely azimuthal in our case, is defined
as

Etot =
√

(ERe
I )2 + (EIm

I )2 (6.1)

with EI the induced electric field, sum of the plasma and the coil electric field
contributions. Etot is represented in Fig. 6.8. It is maximal close to the coil and
decays towards the axis of symmetry (where it cancels). When looking at the spatial
repartition of the electric conductivity (Fig. 6.9), it is no surprise the power is
maximal at mid distance from the wall and the centerline, as it is the region where
the product of σe and E2

tot is maximal. We also see that the σe profile closely follows
the temperature profile, as the conductivity is manly dependent on temperature, and
the pressure is constant almost everywhere.

Fig. 6.8.: Total electric field magnitude ||Etot|| for the case with a probe (top) and without
a probe (bottom) in the Plasmatron facility. The coils surrounding the facility
are represented by the black dots. The exact simulation parameters are shown in
Section 5.4.
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Fig. 6.9.: Electron electric conductivity σ for the case with a probe (top) and without a
probe (bottom) in the Plasmatron facility. The coils surrounding the facility are
represented by the black dots. The exact simulation parameters are shown in
Section 5.4.

The effective Lorentz force magnitude and the electric force field lines have been
displayed in Fig. 6.10. The effective Lorentz force is maximal close to the first and
last coils.

Fig. 6.10.: Magnitude of the effective Lorentz Force for the case with a probe (top) and
without a probe (bottom) in the Plasmatron facility. The coils surrounding the
facility are represented by the black dots. The exact simulation parameters are
shown in Section 5.4.

6.2 ICP parametric study
In ICP facility, the experimenter has control over certain parameters, namely the

inlet mass flow rate Q and swirl angle S, the power injected in the coil (controlled
with Ptot in the simulation), the induction frequency f and the background pressure
p0. Predicting the impact of each of these parameters on the various fields is not
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easy, but is crucial for the preparation of actual experiments. We analyze the impact
of the previously mentioned parameters on the Plasmatron probe case described in
Section 5.4, with geometry given in Fig. 5.4. They are discussed separately, meaning
that all parameters of the simulation (boundary conditions, etc...) remain constant
except for the one under investigation. Note that only steady-state computations are
considered.

We first assess the impact on the streamlines in the facility for the smallest and
largest value of each parameter respectively. Then, we study the profiles inside the
torch (see TC line in Fig. 5.4). In particular, we analyze the temperature T , volume
power P , electric conductivity σe, total electric field magnitude Etot, gauge pressure
∆p and axial velocity vz. Then, we analyze the evolution of the total enthalpy radial
profile H at the exit of the jet, at 48.6 cm from the torch inlet. The total volume
enthalpy H is defined as

H = ρe+ 1
2ρ||v||2 + p (6.2)

with e the internal energy, ρ the density and p the static pressure.
Finally, we discuss the variation of the profiles along the stagnation line (H, T , vz,

∂rvr, ∂zT , with vr the radial velocity component) as a function of each parameter
(see the STAG line in Fig. 5.4). The axial inflection point of ∂rvr gives an estimate
of the boundary layer thickness close to the probe tip. The latter is displayed on the
corresponding graphs. The normal heat flux at the probe tip variation is also discussed.
The outlet pressure and wall temperature are set for all following simulations to the
background pressure p0 and Twall = 350 K respectively.

6.2.1 Impact of the mass flow rate

We studied flow rates from 8 g s−1 to 16 g s−1, with steps of 2 g s−1, as they are
representative of flow rates in the Plasmatron facility.

Impact on the streamlines and speed

The impact of the mass flow rate Q on the streamlines and the velocity magnitude
is shown in Fig. 6.11 for Q = 8 g s−1 and Q = 16 g s−1. While the velocity norm is
greater in the recirculation region for larger Q, the opposite is true in the part of the
torch after the flow has been heated. In fact, the slower incoming fluid has more
time to be heated in the torch, decreasing its density compared to faster inlet flow.
Because Q is conserved, the slower fluid undergoes a greater acceleration after being
heated.
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Fig. 6.11.: Streamlines and velocity magnitude v for a mass flow rate of Q = 8 g s−1 (top)
and Q = 16 g s−1. The exact simulation parameters are shown in Section 5.4.

In the torch

In the torch center, the flow rate has a negligible impact on the electric and tempera-
ture fields, and consequently on the power and electric conductivity (Fig. 6.12 and
Fig. 6.13).
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Fig. 6.12.: Temperature T and Joule heating volume power P profiles in the torch center
as a function of the mass flow rate Q. r is the radial position from the symmetry
axis. The exact simulation parameters are shown in Section 5.4.
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Fig. 6.13.: Total electric field norm Etot and electron electric conductivity σe profiles in the
torch center as a function of the mass flow rate Q. r is the radial position from
the symmetry axis. The exact simulation parameters are shown in Section 5.4.

However, it has an influence on the gauge pressure ∆p and the axial velocity vz

(Fig. 6.14). On the other hand, the vz profile is significantly impacted, with increasing
centerline velocity.
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Fig. 6.14.: Gauge pressure ∆p and axial velocity profile vz in the torch center as a function
of the mass flow rate Q. r is the radial position from the symmetry axis.

At the torch exit

At the torch exit, the total enthalpy of the system H is almost unchanged (Fig. 6.15).
Following the previous discussion, the mass flow rate Q has a marginal impact on
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the temperature profile, but acts mainly on the hydrodynamic fields. Since for ICP
flows, H is mainly dominated by the internal energy, and the velocity changes are
not sufficient to make kinetic energy dominant.
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Fig. 6.15.: Total enthalpy H profile at the torch exit as a function of the mass flow rate Q. r
is the radial position from the symmetry axis. The exact simulation parameters
are shown in Section 5.4.

Along the stagnation line

Along the stagnation line, Q has almost no impact on the enthalpy profile. However,
it influences the temperature of the incoming fluid, which decreases with increasing
Q (Fig 6.16).
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Fig. 6.16.: Total enthalpy H and temperature profile T along the stagnation line as a function
of the mass flow rate Q. ∆z is the axial position from the probe tip. The exact
simulation parameters are shown in Section 5.4.

On the other hand, the axial velocity field vz and the radial gradient of the radial
velocity profile are significantly affected by Q (Fig. 6.17). The boundary layer
thickness, dictated by the inflection point of ∂rvr, increases slightly with increasing
Q.

0 1 2 3
0

50

100

150

200

∆z [cm]

v z
[m

s−
1 ]

Q = 8 g s−1

Q = 10 g s−1

Q = 12 g s−1

Q = 14 g s−1

Q = 16 g s−1

0 1 2 3
0

2

4

6

·103

∆z [cm]

∂
r
v r

[s
−

1 ]

Fig. 6.17.: Axial velocity vz and radial gradient of the radial velocity ∂rvr profiles along the
stagnation line as a function of the mass flow rate Q. ∆z is the axial position
from the probe tip. The inflexion point of ∂rvr has been marked for each regime.
The exact simulation parameters are shown in Section 5.4.

The temperature gradient decreases with increasing Q at the wall, while it remains
constant everywhere else on the stagnation line. On the other hand, the normal heat
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flux q at the tip of the probe is also decreasing (Fig. 6.18). This is explained by the
lowering of the temperature of the fluid impinging on the probe with increasing Q.
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Fig. 6.18.: Axial temperature gradient ∂zT along the stagnation line and normal heat flux

q at the tip of the probe as a function of the mass flow rate Q. ∆z is the axial
position from the probe tip. The exact simulation parameters are shown in
Section 5.4.

Impact on the magnetic interaction parameter

The impact of Q on the local interaction parameter Im for Q = 8 g s−1 and Q =
16 g s−1 is given in Fig. 6.19. An increased mass flow slightly shifts the region of
strong influence of the Lorentz force to the right.

Fig. 6.19.: Magnetic interaction parameter Im for a mass flow rate of Q = 8 g s−1 (top) and
Q = 16 g s−1. The exact simulation parameters are shown in Section 5.4.
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6.2.2 Impact of the background pressure

We studied background pressures ranging from 5000 Pa to 20 000 Pa, with a step
of 5000 Pa. We chose this range because, below 5000 Pa, the local thermodynamic
equilibrium hypothesis completely breaks. On the other hand, above 20 000 Pa, it was
found that the steady solver fails. The causes of this failure are still uncleared, but
it could be due to unsteady behaviour of the fluid at these pressures. Nonetheless,
these values represent plausible operating conditions of ICP facilities.

Impact on the streamlines and speed

The impact of the background pressure p0 on the streamlines and the velocity mag-
nitude is shown in Fig. 6.20 for p0 = 5000 Pa and p0 = 20 000 Pa. The entrance
recirculation bubble length recedes a little, but the fluid recirculates faster for lower
background pressure. The velocity norm is smaller for higher pressure, due to the
higher density and conservation of the mass flow rate.

Fig. 6.20.: Streamlines and velocity magnitude v for a background pressure of p0 = 5000 Pa
(top) and p0 = 20 000 Pa. The exact simulation parameters are shown in Sec-
tion 5.4.

In the torch

In the torch, increasing the pressure does not affect significantly the maximal tem-
perature of the ICP facility. However, it tightens the temperature profile around the
center line and shifts the volume power peak towards the symmetry axis (Fig. 6.21).
The modification of the temperature profile is explained by two phenomena. First,
for these range of pressures, the fluid heat conductivity decreases with increasing
pressure, concentrating the region of greater temperature close to the centerline.
Second, the recirculation is weakened with increasing pressure, transporting less heat
in the bulk of the torch.
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Fig. 6.21.: Temperature T and Joule heating power P profiles in the torch center as a
function of the background pressure p0. r is the radial position from the symmetry
axis. The exact simulation parameters are shown in Section 5.4.

The electric conductivity profile tightens and increases around the center line.
The general shape of the total electric field being almost unaffected by pressure
(Fig. 6.22), the volume power peak shifts towards the center line accordingly.

0 2 4 6 8
0

1

2

3

4

·103

r [cm]

σ
[S

m
−

1 ]

0 2 4 6 8
0

0.5

1

·103

r [cm]

E
to

t
[V

m
−

1 ]

p0 = 5000 Pa
p0 = 10 000 Pa
p0 = 15 000 Pa
p0 = 20 000 Pa

Fig. 6.22.: Total electric field norm Etot and electron electric conductivity σe profiles in
the torch center as a function of the background pressure p0. r is the radial
position from the symmetry axis. The exact simulation parameters are shown in
Section 5.4.

Finally, the gauge pressure decreases with increasing background pressure. On the
other hand, the axial velocity profile is modified (Fig. 6.23). It adapts to the density
increase by lowering the axial velocity magnitude in order to keep a constant flow
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rate. The axial velocity along the stagnation line increases.
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Fig. 6.23.: Gauge pressure ∆p and axial velocity profile vz in the torch center as a function
of the background pressure p0. r is the radial position from the symmetry axis.
The exact simulation parameters are shown in Section 5.4.

At the torch exit

At the torch exit, the total enthalpy H of the system increases significantly with
increasing pressure (Fig. 6.24). It is no surprise as increasing the pressure also
increases the fluid density and internal energy, leading to an augmentation of H.
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Fig. 6.24.: Total enthalpy H profile at the torch exit as a function of the background pres-
sure p0. r is the radial position from the symmetry axis. The exact simulation
parameters are shown in Section 5.4.
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Along the stagnation line

Along the stagnation line, the temperature is strongly affected by pressure variations
around p0 = 5000 Pa. Then, as pressure is increased, the temperature profile is
less sensitive to the variation of this parameter. On the other hand, pressure has a
significant effect on the total enthalpy profile (Fig 6.25).
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Fig. 6.25.: Total enthalpy H and temperature profile T along the stagnation line as a function
of the background pressure p0. ∆z is the axial position from the probe tip. The
exact simulation parameters are shown in Section 5.4.

The axial velocity field vz and the radial gradient of the radial velocity profile are
significantly affected by p0 (Fig. 6.26), both decreasing with increasing background
pressure. The boundary layer thickness is affected by pressure for p0 around 5000 Pa.
However, it becomes pressure independent for background pressure above this
value.
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Fig. 6.26.: Axial velocity vz and radial gradient of the radial velocity ∂rvr profiles along the
stagnation line as a function of the mass flow rate Q. ∆z is the axial position
from the probe tip. The inflexion point of ∂rvr has been marked for each regime.
The exact simulation parameters are shown in Section 5.4.

The temperature gradient becomes steeper with increasing p0 at the probe tip,
while it remains constant everywhere else on the stagnation line. On the other hand,
the normal heat flux q at the tip of the probe is also increasing (Fig. 6.27). This is
explained by the increase of temperature impinging on the probe with increasing
p0.
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Fig. 6.27.: Axial temperature gradient ∂zT along the stagnation line and normal heat flux
q at the tip of the probe as a function of the mass flow rate Q. ∆z is the axial
position from the probe tip. The exact simulation parameters are shown in
Section 5.4.
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Impact on the non-dimensional numbers

The impact of p0 on the local interaction parameter Im for p0 = 5000 Pa and p0 =
20 000 Pa is given in Fig. 6.28. An increase in pressure leads to an increase in Im,
giving more importance to the effective Lorentz force both in the torch, but also in
the chamber, where the effect of the Lorentz force is felt further down the jet.

Fig. 6.28.: Magnetic interaction parameter Im for a background pressure of p0 = 5000 Pa
(top) and p0 = 20 000 Pa (bottom). The exact simulation parameters are shown
in Section 5.4.

The impact of p0 on the Joule and induction numbers is given in Table. 6.1. The
Joule number Jn and induction number Nind increase with pressure, meaning that
the heating of the flow is more efficient and the induction current are located closer
to the torch wall.

p0 Jn Nind
p0 = 5000 Pa 118 284
p0 = 20 000 Pa 1866 344

Tab. 6.1.: Table reporting the Joule Jn and induction Nind numbers for background pressure
p0 of 5000 Pa and 20 000 Pa.

6.2.3 Impact of the power

We studied the effect of the total power Ptot dissipated in the facility, in the
range 50 kW to 200 kW with steps of 50 kW, which are powers representative of ICP
computations. Too low power would lead to a quenching of the torch.
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Impact on the streamlines and speed

The impact of the total power Ptot dissipated in the facility on the streamlines and the
velocity magnitude is shown in Fig. 6.29 for p0 = 5000 Pa and p0 = 20 000 Pa. The
recirculation length is increased for lower power Ptot. On the other hand, the velocity
magnitude increases dramatically in the whole facility with Ptot. Indeed, due to the
greater heating, the fluid has a lower density, and the velocity increases due to the
constant mass flux Q.

Fig. 6.29.: Streamlines and velocity magnitude v for a power of Ptot = 50 kW (top) and
Ptot = 200 kW. The exact simulation parameters are shown in Section 5.4.

In the torch

In the torch, the impact of the total power Ptot on the temperature profile is twofold.
At first, the maximal temperature increases significantly with the rising power. Then,
as Ptot increases, the temperature profiles broadens, but the maximal temperature
stalls. The heat is spread more evenly in the torch since, for these temperature
ranges, the heat conductivity of the air increases with temperature, easing the heat
transferred from the torch center towards the wall. Moreover, the increase in power
strengthen the recirculation bubble, which contributes to the distribution of heat.
Secondly, increasing Ptot shifts the volume power peak further away from the center
line in the facility, while increasing its magnitude. Although the volume power
becomes more localized around the peak with increasing Ptot, its magnitude increases
everywhere in the torch. Both temperature and volume power profiles are displayed
in Fig. 6.30.
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Fig. 6.30.: Temperature T and Joule heating power P profiles in the torch center as a func-
tion of the total power dissipated in the facility Ptot. r is the radial position from
the symmetry axis. The exact simulation parameters are shown in Section 5.4.

The electric field and electric conductivity in the torch center are also affected by an
increasing Ptot. The former decreases closer to the center line and increases towards
the wall. The latter broadens and increases along the radial profile (Fig. 6.31).
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Fig. 6.31.: Total electric field norm Etot and electron electric conductivity σe profiles in the
torch center as a function of the total power dissipated in the facility Ptot. r is
the radial position from the symmetry axis. The exact simulation parameters are
shown in Section 5.4.

Ptot also has a significant effect on the gauge pressure ∆p and velocity profiles
(Fig 6.32). ∆p is increased with growing Ptot, while vz magnitude is reduced along
the centerline.
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Fig. 6.32.: Gauge pressure ∆p and axial velocity profile vz in the torch center as a function
of the total power dissipated in the facility Ptot. r is the radial position from the
symmetry axis. The exact simulation parameters are shown in Section 5.4.

At the torch exit

At the torch exit, the maximal value of the total enthalpy H profile is almost not
affected by increasing Ptot (Fig. 6.33). The profile is mainly broadened.
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Fig. 6.33.: Total enthalpy H profile at the torch exit as a function of the total power dissipated
in the facility Ptot. r is the radial position from the symmetry axis. The exact
simulation parameters are shown in Section 5.4.
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Along the stagnation line

Ptot has a significant impact on the temperature profile along the stagnation line,
which increases with increasing power. The total enthalpy is influenced in the same
manner.
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Fig. 6.34.: Total enthalpy H and temperature profile T along the stagnation line as a function
of the total power dissipated in the facility Ptot. ∆z is the axial position from the
probe tip. The exact simulation parameters are shown in Section 5.4.

The axial velocity field vz and the radial gradient of the radial velocity profile
are significantly increased with an increasing Ptot (Fig. 6.35). The boundary layer
thickness first decreases with power, then starts to increase again above Ptot =
100 kW.
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Fig. 6.35.: Axial velocity vz and radial gradient of the radial velocity ∂rvr profiles along the
stagnation line as a function of the total power dissipated in the facility Ptot. ∆z is
the axial position from the probe tip. The inflexion point of ∂rvr has been marked
for each regime. The exact simulation parameters are shown in Section 5.4.

Because the temperature coming from the jet is greatly increased with an increasing
Ptot, the temperature gradient magnitude also increases at the probe tip, while it
remains constant everywhere else on the stagnation line. On the other hand, the
normal heat flux q at the tip of the probe is also increasing (Fig. 6.36).
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Fig. 6.36.: Axial temperature gradient ∂zT along the stagnation line and normal heat flux
q at the tip of the probe as a function of the mass flow rate Q. ∆z is the axial
position from the probe tip. The exact simulation parameters are shown in
Section 5.4.
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Impact on the non-dimensional numbers

The impact of Ptot on the local interaction parameter Im is shown in Fig. 6.28.
Increasing the power actually diminishes the importance of the Lorentz force, but
does not have a significant impact on its area of effect.

Fig. 6.37.: Magnetic interaction parameter Im for a power dissipated in the facility Ptot of
Ptot = 50 kW (top) and Ptot = 200 kW (bottom). The exact simulation parameters
are shown in Section 5.4.

The impact of Ptot on the Joule and induction numbers is given in Table. 6.2. The
Joule number Jn increases, meaning that the heating of the flow is more efficient. On
the other hand, the induction number Nind remains the same, and the skin depth is
more or less unchanged.

Ptot Jn Nind
50 kW 50 284
200 kW 236 284

Tab. 6.2.: Table reporting the Joule Jn and induction Nind numbers for power Ptot of 50 kW
and 200 kW

6.2.4 Impact of the frequency

We studied frequencies f of 10 kHz, 80 kHz, 300 kHz, 500 kHz and 1 MHz. A too
low frequency increases the impact of the effective Lorentz force and destabilizes
the flow, and the steady-state solver fails. On the other hand, if f is too large, it
becomes comparable or greater to the plasma electron oscillation frequency, and the
local thermodynamic equilibrium hypothesis breaks. Moreover, at large frequencies,
displacement current must be taken into account.
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Impact on the streamlines and speed

The impact of the induction frequency f on the streamlines and the velocity mag-
nitude is shown in Fig. 6.38 for f = 10 kHz and f = 1 MHz. Increasing f has for
effect to decrease the velocity magnitude in the facility and slightly decreases the
recirculation bubble length.

Fig. 6.38.: Streamlines and velocity magnitude v for an induction frequency of f = 10 kHz
(top) and f = 1 MHz. The exact simulation parameters are shown in Section 5.4.

In the torch

In the torch, the frequency f has an impact on the maximal temperature reached in
the facility, but the width of the profile remains the same. On the other hand, the
maximal volume power dissipated in the facility is reduced with increasing frequency.
A shift in the power peak towards the wall is also observed, with a broadening of
the profile (Fig. 6.39). Both maximal temperature and volume power decrease with
increasing frequency.
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Fig. 6.39.: Temperature T and Joule heating power P profiles in the torch center as a
function of the induction frequency f . r is the radial position from the symmetry
axis. The exact simulation parameters are shown in Section 5.4.

f also has an impact on the total electric field and the electron electric conductivity
profile σe. The effect on the former is qualitatively comparable to the impact of
an increase in total power Ptot. On the other hand, σe decreases in magnitude.
Consequently, the decrease in the power peak is due to the decrease in σe, and the
power shift is mainly due to the increase of the electric field closer to the torch walls.
Note that the frequency has a huge impact on Etot magnitude close to the torch wall,
while it is less important close to the center line.
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Fig. 6.40.: Total electric field norm Etot and electron electric conductivity σe profiles in
the torch center as a function of the induction frequency f . r is the radial
position from the symmetry axis. The exact simulation parameters are shown in
Section 5.4.

The axial velocity and gauge pressure profiles in the torch center (Fig. 6.41) are
also influenced by f . The pressure increases closer to the center line but decreases
closer to the torch wall. On the other hand, the magnitude of vz decreases towards
the center of the torch.
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Fig. 6.41.: Gauge pressure ∆p and axial velocity profile vz in the torch center as a function
of the induction frequency f . r is the radial position from the symmetry axis. The
exact simulation parameters are shown in Section 5.4.

6.2 ICP parametric study 113



At the torch exit

At the torch exit, the total enthalpy H of the system is little influenced by the
frequency (Fig. 6.42). The only region of influence is close to the center line, where
the temperature varies the most.
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Fig. 6.42.: Total enthalpy H profile at the torch exit as a function of the induction frequency f .
r is the radial position from the symmetry axis. The exact simulation parameters
are shown in Section 5.4.

Along the stagnation line

The induction frequency does not really impact the enthalpy nor the temperature
profile along the stagnation line, nor the axial velocity field vz and the radial gradient
of the radial velocity profile (Fig. 6.44). Moreover, the boundary layer thickness is
independent of f .
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Fig. 6.43.: Total enthalpy H and temperature profile T along the stagnation line as a function
of the induction frequency f . ∆z is the axial position from the probe tip. The
exact simulation parameters are shown in Section 5.4.
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Fig. 6.44.: Axial velocity vz and radial gradient of the radial velocity ∂rvr profiles along the
stagnation line as a function of the induction frequency f . ∆z is the axial position
from the probe tip. The inflexion point of ∂rvr has been marked for each regime.
The exact simulation parameters are shown in Section 5.4.

Because the temperature coming from the jet is not significantly impacted by f ,
the temperature gradient and the normal heat flux q at the tip of the probe are not
affected as well (Fig. 6.45).
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Fig. 6.45.: Axial temperature gradient ∂zT along the stagnation line and normal heat flux
q at the tip of the probe as a function of the induction frequency f . ∆z is the
axial position from the probe tip. The exact simulation parameters are shown in
Section 5.4.

Impact on the non-dimensional numbers

The impact of f on the local interaction parameter Im is shown in Fig. 6.46. Increasing
the induction frequency decreases dramatically the importance of the Lorentz force.
Its magnitude is decreased everywhere, and it almost has no impact on the jet.

Fig. 6.46.: Magnetic interaction parameter Im for an induction frequency f of f = 10 kHz
(top) and f = 1 MHz (bottom). The exact simulation parameters are shown in
Section 5.4.

The impact of f on the Joule and induction numbers is given in Table. 6.3. The
Joule number remains constant meaning that the heating of the flow is the same. On
the other hand, the induction number Nind increases proportionally to f . The skin
depth decreases.
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f Jn Nind
10 kHz 118 6.23
1 MHz 118 623

Tab. 6.3.: Table reporting the Joule Jn and induction Nind numbers for induction frequencies
of 10 kHz and 1 MHz

6.2.5 Impact of the swirl

Swirl can be added at the inlet in order to further stabilize the torch. The main
impact of the swirl is its influence on the probe velocity boundary layer. Also, the
swirl creates a pressure drop at the exit of the torch. If the swirl is too large, the
pressure defect becomes so strong that it creates a cold recirculation bubble at the
torch exit. Predicting this phenomenon is crucial, since it has a significant impact on
heat flux and velocity experimental measurements. We have shown in Fig. 6.47 the
evolution of the pressure at the torch exit and the boundary layer thickness for swirl
angles S ranging from 0◦ to 20◦ with a step of 5◦.
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Fig. 6.47.: Gauge pressure ∆p radial profile as a function of the swirl angle S at the exit of
the torch and radial gradient of the radial velocity ∂rvr along the stagnation line
in front of the probe. r is the radial position, ∆z is the axial position from the
probe tip. The inflexion point of ∂rvr has been marked for each regime.

Unfortunately, we did not study the formation of the recirculation bubble, as this
phenomenon is unsteady. We leave it for future work.
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6.3 Conclusion of the physical study
In this Chapter, we have simulated actual ICP flow conditions. We first displayed

various fields for the test cases listed in Section 5.4. We showed that the flow was
subsonic with quasi-constant pressure. It also presented very large temperature
gradients in the near wall region. We also showed that the electric field has an impact
only in the torch, where the power dissipated in the facility is concentrated in the
region where the coupling between the plasma and the electric field is the largest.
We also showed the recirculating nature of the flow at the inlet. We observed that no
noticeable discrepancies between the probe and freestream cases exists inside the
torch. The main difference occur in the chamber for the hydrodynamic field. These
disparities are due to the presence of the probe which modifies pressure, streamlines
and velocity fields in the jet. On the other hand, for the electric field and quantities
derived from it, such as the Lorentz force or the power, the probe and freestream cases
give similar results, because the electric field is almost negligible in the chamber.

Then, we assessed the effect of increasing the mass flow rate Q, background
pressure p0, total power dissipated in the facility Ptot, induction frequency f and swirl
angle S on the electric and hydrodynamic fields. We list here the main impact of
these parameters on the ICP flow field according to our simulations. The mass flow
rate had mainly an impact on the hydrodynamic fields, as it influences the velocity
field. Its influence can also be felt in the heat flux at the tip of the probe and the
stagnation point boundary layer thickness, both of them decreasing with increasing
Q. The background pressure, by impacting the density of the fluid has a huge impact
on the velocity field. Combined with its influence on the transport properties of the
plasma, it alters the heat repartition in the facility. A higher pressure plasma has a
tendency to concentrate the heat towards the axis of symmetry, effectively increasing
the heat flux at the tip of the probe. Unsurprisingly, Ptot brings heat to the system,
participating to the elevation and repartition of temperatures and an increase of the
heat flux at the probe. Indirectly, it also modifies the density of the fluid, impacting
the velocity fields. This is one of the most impactful parameters. The frequency also
has a great influence on the flow field, especially on the electric field generated in the
plasma. In general, increasing frequency decreases the effectiveness of the heating.
Finally, the swirl has almost no measurable impact, except on the pressure at the
torch exit, where a large swirl can lead to large adverse pressure gradient, possibly
creating a cold recirculation bubble.

We proved in this Chapter that our ICP code can easily perform parametric studies.
Taking advantage of the fast convergence and ease of use of the code, we managed
to study the ICP simulations for a wide range of parameters. Of course, the range of
validity of our model and conclusions is limited, as we only considered an axisym-
metric equilibrium steady-state ICP model without radiation. The results presented
here should be validated using experimental data. These considerations are left for
future work.

6.3 Conclusion of the physical study 118



Conclusions of the thesis
and future work

7

This work is the result of the collaboration between the von Karman Institute for
Fluid Dynamics (VKI) and the University of Liège. This project started in 2020, during
the author’s master thesis at VKI. It was supposed to last six months, but ended up
filling an entire Ph. D. project. Our work was funded by a FNRS (FRIA) fellowship.
We benefited from the expertise of VKI for the physical modeling of the Plasmatron
facility through Prof. Thierry Magin and the expertise in high-order solver from the
ULiège team of Prof. Koen Hillewaert. The code was developed using the Unified
Framework, a hybridized discontinuous Galerkin framework developed by the group
of Prof. Georg May.

7.1 Conclusions
The original plan of this project was to create a solver capable of producing

high-order, 3D, time accurate and possibly non (chemical and thermal) equilibrium
inductively coupled plasma flow. The primary goal was to see if high-order solvers
were able not only to withstand ICP simulations, but also to go far beyond what had
been done by legacy solvers. It turned out that this project was far too ambitious
for a single thesis. Although we did not fulfill our (very) numerous objectives, we
strongly believe that this work has lead the way of future ICP simulations. But before
going further, we answer the three questions asked in the introduction.

• In addition of being precise, can a high-order solver be robust? We answer
this question with a resonant "yes"! The code that we produced was even more
robust than legacy finite volume solvers. We are convinced that it is due to
the monolithic approach. The idea of using this monolithic strategy came to
us from previous research in the ICP simulation field by David Vanden Abeele
in the early 2000, who solved the fully coupled system using a Jacobian free
GMRES approach. Although those results were never published officially, David
wrote in his thesis that they improved the convergence dramatically. One of the
issues with this approach is that one still needs to give an approximation of the
Jacobian in order to precondition the system. An analytical expression of this
Jacobian, even approximated, can be cumbersome to obtain, especially with the
complex chemistry at play. We took advantage of the capabilities of our code,
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which uses automatic differentiation. This feature allows to store parameters
and their derivatives with respect to the variables of the problem. The operations
of additions, subtractions, etc... on the parameters are automatically applied to
their derivatives, creating the Jacobian without having to derive it analytically
nor approximate it. This approach allowed us to easily construct the Jacobian
of the system and solve it monolithically.

One of the drawbacks is that Mutation++ is not equipped with automatic
differentiation. Fortunately, since we were using an LTE table of states with
linear interpolation, the derivatives were easy to reconstruct. However, it would
be interesting to implement automatic differentiation directly in Mutation++,
especially for the non-equilibrium case. One of the main arguments against a
monolithic approach is their complexity of implementation and their relative
rigidity. On the other hand, arguments in favor of staggered solvers is that they
are easier to implement, and more flexible (one can easily use two methods for
two physics e.g. use FEM for the electric field and HDG for the Navier-Stokes
equations for ICP). Although we agree on the ease of use of the staggered solvers,
they produce slow convergence for ICP applications. We also believe that the
arguments against the monolithic multi-domain approach come from the fact
that existing solvers are not equipped to integrate it easily. This is the same
problem as parallelizing a code that was never developed to be parallelized: you
have to rebuild it from the ground. However, the computational gain obtained
after the parallelization of a code is rarely contested. We strongly believe that
the same rationale should apply to monolithic solvers : it requires a certain
effort, but once it is done, the gains are enormous. Moreover, we believe that
the strong coupling in ICP requires a monolithic approach, and a dedicated
solver had to be developed.

Another important point for the robustness of the solver is the design of the
convective and diffusive numerical fluxes. The diffusive flux used in this work
is frequently used in HDG, we did not expect any problem from this side and
never had. However, we were concerned about the low-Mach AUSM convective
numerical flux, since such fluxes had never been used in the framework of
DG methods. Surprisingly, it worked "out-of-the box", requiring just a little
adaptation for HDG. One of the drawbacks of this flux is that it is specifically
designed for the low-mach flows. Out of curiosity, we tested several AUSM
formulations for all Mach regimes (AUSM+up, SLAU). However, none of these
solvers were as stable as the low-Mach one, meaning that a non-negligible effort
has to be made in order to adapt them to HDG. These developments are vital if
considering supersonic flows with real compressibility in the future.

• Is the developed solver user-friendly? The solver developed here gives
meaningful results in only 20 minutes of computational time, starting from
a crude initial solution on a laptop. This is a great improvement compared
to legacy codes, that either have to run on multiple processors for 2-3 hours
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if not starting from a "good" initial solution, i.e. profiles close to the solution
of the current simulation. The pseudo-timestep method implemented is also
very efficient and does not need to be monitored continuously. This allows
to save a lot of computational and researchers time, as they do not have to
stay next to their computer during the simulation. Moreover, we were able
to perform a thorough parametric study thanks to these features. The mesh
can be generated using automatic algorithms, and easily adapts to complex
geometries. On the side of the programmer, new sets of equations can easily
be appended to the code, thanks to the automatic differentiation, opening the
path to non-equilibrium models or modification of the electric field produced
by the coils. In our experience, the code is very flexible, allowing to simulate a
wide variety of simulation with the same mesh and giving meaningful results.
So yes, the code is user-friendly.

Although the solver is more robust and easier to use than its predecessors, it still
requires parameter tuning. We primarily think about the penalization term of
the diffusive flux, which has to be carefully chosen otherwise the method does
not converge. Unfortunately, there is no magical formula that computes it. The
mesh is also crucial in the convergence procedure. If it is not refined enough,
the solver crashes. If the element size is too small, the high-accuracy solver
may stall due to the capture of small scale unsteady phenomena or bad system
conditioning. Since the code is high-order, it is more sensitive to instabilities,
and configurations that gave a steady solution using a finite volume code might
give an unsteady behaviour using HDG and never converge with the steady
solver. In the end, this attests of the accuracy of the solver. Note also that specific
care has to be taken in the boundary layer, where highly structured elements
are required. We tested unstructured triangular elements but ended up with
oscillating solution in the near wall region. We suspected that the functional
space of the triangle was not rich enough to correctly capture the gradient in
all directions. Anyways, the quads cured the issue. When a completely new
test case needs to be simulated, the mesh and stabilization parameters of the
test case have to be determined again, which, from our experience, can be a
cumbersome and time consuming task. However, once these parameters are
fixed, they remain valid for a large number of similar configurations. They
usually need to be redetermined when the flow conditions or geometry are
dramatically different from what was simulated before.

The ease of use, robustness and speed of the developed code in this thesis makes
it an ideal companion for ICP experimenters. It can give valuable information
in relatively short time, helping to better prepare the experiments. A striking
example is the parametric study we performed in Chapter 6. The only limitation
is the physics it is able to represent, which is axisymmetric plasma at equilibrium.
The extensions to more general configurations is discussed in the answer to the
next question.
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• Can the new solver be easily adapted to the new experiments performed
in ICP facilities? We strongly believe that the solver developed here can be
extended to take into account a wide variety of physical phenomena. The
problem mainly lies in its computational capabilities. Unfortunately, the HDG
framework used in this thesis is not parallel and not optimized for larger
computations. This is a real drawback, as we tried to run unsteady axisymmetric
simulations successfully, but we could not gather enough data because the
simulations were extremely slow. Another issue of ICP simulations is that
detailed physics requires many equations. This increased number is felt not
only at the hydrodynamic level, but also in the chemistry algorithms, which
become more complex. This effect is amplified when considering 3D test cases,
which require even more degrees of freedom than axisymmetric or 2D flows.
When considering unsteady and turbulent behaviour, where the mesh must
be sufficiently refined in order to correctly capture the physical phenomena of
interest, this constraint is even more amplified. Consequently, the code must be
paralleled in order to match the computational requirements. The integration of
complex chemistry and thermal behaviour requires to solve many small systems
of equations in order to compute the transport properties and chemical reaction
rate. In order to mitigate this drawback, one could use GPU parallelization
to deal with these many small computations efficiently. Unfortunately, the
Mutation++ library is not yet equipped with such capabilities, and making it
so is another formidable task.

Aside from the question of computational power, the stability and accuracy
of the solver are not a priori guaranteed for more complex flow simulations.
We have discussed for instance the need of performing experiments involving
shocks in the facility. However, we have not studied supersonic plasma flows,
and therefore cannot make any prediction on the solver behaviour concerning
shocks. In order to preserve accuracy, several solutions exists. First, at higher
Mach number, the convective numerical flux has to be adapted to all speed
regimes. We tested some of these solvers, but none of them were as stable
as the low-Mach one. Consequently, the design of those fluxes needs to be
investigated. The shocks can be stabilized by either using an entropy stable
scheme, or the combination of the high-order method with the finite volume
method near the shock. These latter fields of research are active in the group
of Prof. Koen Hillewaert at the university of Liège (cfr. more specifically the
work of Bilocq et al. [11]), and can explored for the HDG code. Capturing
unsteady behaviour is also very important. We highly suspect that there exists
no steady flow in ICP facility. First, our equations are time-averaged over one
oscillation period of the induction current, effectively killing the effect of the
oscillating electric field. Second, these suspicions come from the fact that it was
impossible to obtain a steady solution when the coflow was removed from the
chamber, whatever the simulation parameters. We know that steady solutions
were found using finite volume solvers and no coflow, but FV is much more
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dissipative than our high-order method, killing potential unsteady behaviour.
Also, when running unsteady computations, the plasma jet started to oscillate.
It was possible to obtain a steady state with the simple backward Euler unsteady
solver after a sufficiently long simulation time and large timesteps. But as soon
as the time step was decreased again or a time marching method with greater
accuracy was used, the jet oscillations came back. From our experience, only
the simple backward difference scheme was stable, but of course, many other
temporal solver exists and should be investigated.

In short, the answer to the research question is yes, the solver can be adapted
to match new experiments in the facility, but it requires additional efforts to do
so. With this objective in mind, the thesis of Landry Riou, which we have partly
supervised during our last Ph. D. year, has been started. Because developing a
parallel code from scratch takes a non negligible amount of time, Landry is going
to incorporate the results of this work in a high performance, discontinuous
Galerkin multi-physics solver called ARGO. With these developments, we hope
to be able to simulate more complex physics than is possible with our current
solver.

As a conclusion, although we did not fulfill all the primary objective of the thesis,
we produced the proof that high-order methods are advantageous in the simulation of
inductively coupled plasma flow. The flexibility of the monolithic method developed
here, its efficiency, the possibility to adapt to any geometric configuration and its
robustness makes it the perfect candidate for future ICP computations. Moreover, it
can be used easily, even by people with little experience in numerical methods, on
a simple laptop. The code is also very modular, it can be adapted to new physical
situations quite easily. Shortly said, we opened a new era in the simulation of ICP
flows.

7.2 Future work
Although this thesis poses the basis of a new kind of ICP flow simulations, we were

not able to explore more physical and geometrical features of ICP. We discuss future
research directions.

The first research direction is the physical modeling of the plasma in ICP. This
research can be first performed in axisymmetric configuration, then later adapted
to 3D flows. We would start first with the implementation of elemental demixing in
the LTE model. It allows to keep the equations relatively simple, the only difference
with the classic LTE model being the addition of mass conservation equations for
the elemental fractions and the diffusion of the elements. Note that the elements
do not have production rates because their mass is always conserved, which greatly
simplifies the computations. This relatively simple model should already yield more
accurate results than classic LTE. Then, one should investigate the effect of complete
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non-equilibrium. We listed many possible models in Chapter 2. Depending on the
equilibrium state of the plasma, one should select a sufficiently detailed model. The
radiation also has to be taken into account. In fact, radiation has an important impact
on the heat transfer, but is usually neglected due to its complex modeling and huge
computational cost. We believe that it should be considered in future developments,
as its impact is not negligible for specific flow conditions. Efforts should also be put
in the efficient computations of the transport properties and chemical reaction rate.
Because the computation of these properties requires the solution of a large number
of small systems, an approach using GPU could be investigated.

Another research direction is going for 3D computations. As discussed in Chapter
3, one of the main challenges is to reformulate the equation for the electric field
for 3D flows. For this task, two approaches are possible. First, one could simply
solve for the general electric field equation and the Laplace equation for the electric
potential. This approach is exact, but computationally expensive, since 4 equations
have to be solved (3 for the induced electric field, one for the electrostatic potential)
in addition to the Navier Stokes system. Second, one could consider a perturbation
from the axisymmetric configuration of the induced electric field and ambipolar
assumption for the electrostatic one. We have not investigated these approaches,
but they definitely worth the try. Another point is that 3D ICP would need a fully
parallel code able to handle multiple physics. The implementation of such feature
would make the study of non axisymmetric geometries possible. In particular, for the
Plasmatron, one could simulate the flow inside a semi-elliptical nozzle. One could
also assess the effect of the coil geometry on the flow, and emphasize 3D modes
that cannot be observed with the current codes. Until now, we used not only a
monolithic solver, but also a monolithic system preconditioner. When parallelizing
the code, the monolithic preconditioning approach has to be abandoned. In place,
multi-domain preconditioners (currently additive Schwartz ILU) are used. They
allow for the efficient parallelization of the code, at the cost of a possibly greater
number of iteration in order to reach convergence. The design of these multi-domain
preconditioners should be thoroughly investigated in order to reduce this drawback
as much as possible.

The time accurate simulations also need to be explored. This can also be done
at first on an axisymmetric configuration, then on a 3D solver. As discussed above,
we highly suspect that no steady ICP flow exists. The hot jet released in cold air
may give rise to Kelvin-Helmholtz instabilities, that have to be correctly captured.
Moreover, this unsteady behaviour may have an important impact over the flow fields
and heat flux in the jet. In addition, turbulence could also have an important role in
ICP facilities and should be investigated. Another point of discussion is the averaging
of the equations describing ICP flows over one oscillation period of the induction
current. In real conditions, the fast varying electric field may have an important
impact on the plasma dynamics. Moreover, in the experimental facility, the ripple
component of the generator pulse rectifier is fully transmitted to the flow. One should
be able to study numerically these phenomena. Turbulence in ICP facilities may
also occur at frequencies even higher than the electric oscillation period, requiring
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to correctly capture the temporal variations when performing a direct numerical
simulation. We also ignore the displacement currents, that can be non negligible
when the induction frequency becomes large by disrupting the thermal equilibrium of
the system. Taking into account this wide variety of phenomena is extremely difficult,
as the system becomes very stiff. Indeed, capturing the displacement currents means
capturing the speed of light, which requires a very small time step. Moreover, the
ICP involves physics of very different timescales, making the system to be solved stiff
(i.e. ill-conditioned). The accurate temporal simulation of ICP is a real challenge that
need to be tackled.

Finally, we considered only subsonic computations, with a quite effective low-Mach
numerical flux. As explained in the introduction of this thesis, supersonic flows
are going to be studied in the Plasmatron facility. In order to be able to reproduce
these results using a computational solver, a numerical flux for all speeds has to
be employed. Moreover, depending on the strength of the shock encountered in
the facility, shock capturing techniques may have to be implemented. The latter
techniques are being explored by Maxime Borbouse (ULiège/UCLouvain) or Tobias
Winter (VKI/ULiège) for high order methods. On the other hand, Landry Riou (UNSW
Canberra/VKI) is currently working on the implementation of an ICP high-order code
using the discontinuous Galerkin method in the software ARGO with the purpose of
producing a framework able to tackle all the previous challenges. We briefly discuss
the capabilities of ARGO below.

The presented list of developments for the ICP solver is far from exhaustive. We
have not talked about the simulation of the plasma sheath in the near sample region
for electron transpiration cooling, nor the addition of the magnetic field inside the
probe in order to study the black out phenomena. One of the main ongoing work is
the implementation of our solver capabilities in the ARGO high performance solver.
Because ARGO is already capable of performing 3D, unsteady and turbulent high-
order simulations, it is a good candidate to develop ICP solvers. That is why Landry
Riou is developing a high-performance ICP solver using the latter. In particular, the
code is already able to simulate material ablation. Merging the ICP with the ablation
would really improve the quality of the computations, as for now the temperature
profile at the torch exit obtained via an ICP code is given as input to ARGO in order
to perform ablation simulations. Another topic we did not discuss was the code
validation with experience. We were able to perform comparisons of our code results
with actual ICP experiment. We obtained a quite good agreement, but we did not
have access to a lot of data. In order to completely validate the code, one should
perform a complete validation campaign.

With these considerations, we close this thesis. Although we did not venture into
complex flow configurations, we nonetheless developed a completely new solver for
inductively coupled plasma. By proving that ICP simulations were possible using a
high-order method, and showing its robustness, ease of use and flexibility compared
to legacy finite volume solvers, we have given the keys for future ICP computations.
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This thesis is only the seed, from which many subsequent research in the field of ICP
simulations can grow. We hope that, one day, we will be able to simulate 3D and
unsteady plasma flow, for any physics, being a reference for the experimenters. But
there is still much work to be done...
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Mesh and order
dependence study

A

We assess the mesh size and polynomial order dependence on a realistic case. The
simulation parameters are the following:

• P = 100 kW (power dissipated in the facility)

• p0 = 10 000 Pa (background pressure)

• f = 0.37 MHz (induction frequency)

• Q = 16 g s−1 (mass flow rate)

• S = 20◦ (swirl angle)

• air mixture with 11 species

Two ICP configurations are studied: one with a probe and another one in freestream
conditions. In both cases, a coflow equal to the inlet velocity has been added in the
chamber for stabilization. The probe is hemispherical with a 50 mm diameter. Three
meshes were used for the grid independence study: a coarse, fine and refined meshes,
with increasing number of elements. We first study the effect of the order of the
method on each mesh separately. Based on the results, several orders are selected
depending on the quality of the provided solution. Then, a mesh refinement study is
performed using the selected orders.

This procedure is performed at three specific locations:

1. Along the radial direction in the torch center (TC in Fig. A.1), at 24.3 cm from
the torch inlet. This is the region where the heating is the strongest and the
electric field is the largest. We studied there the evolution of the gauge pressure
∆p, velocity in three directions vz, vr and vθ, the temperature T and the real
ERe

p and imaginary EIm
p parts of the electric field.

2. Along the radial direction, at 83.6 cm from the torch inlet (PF in Fig. A.1). In
the case of the probe, this correspond to ∆z = 35 mm from the probe front. We
studied the evolution of ∆p, vz, vr, vθ and T . Since the electric field is negligible
in this region, it has been overlooked.
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3. For the probe case, we study the stagnation line (STAG in Fig. A.1), extending
from ∆z = 35 mm from the probe end. For this location, we studied ∆p, vz, ∂rvr

and T . vr and vθ are null along the center line and thus disregarded. On the
other hand, we study the radial gradient of the radial velocity component ∂rvr,
since its inflection point plays plays a role in the study of boundary layers. We
also study ∂zT since we are also interested in the heat flux at the probe level.
It is important to note that in HDG, ∂rvr and ∂zT are unknown of the discrete
problem and can be retrieved directly from the solution of the HDG equations.
This is not the case for classic DG or FV methods.

The geometry of the simulated ICP torch is given in Fig. A.1, with the locations where
the mesh and grid dependence study is performed.

127 mm 50 mm

486 mm 385 mm

75 mm
5 mm

25 mmSTAG
TC PF

•
(0, 0)

Fig. A.1.: Schematic representation of the axisymmetric Plasmatron ICP torch with a probe.
The coils surrounding the facility are located at the center of the grey disks on the
schematic. For the freestream case, the same schematic applies, but the probe is
removed.

Profile Start point ([m],[m]) End point ([m],[m])

Probe front (0.836, 0) (0.836, 0.08)

Stagnation Line (0.871, 0) (0.836, 0)

Torch Center (0.243, 0.) (0.243, 0.08)
Tab. A.1.: Start and end points of the profiles used for the mesh and order independence

studies in the probe case. The point (0,0) is displayed in Fig. A.1. In the freestream
case, since there is no probe, the stagnation line is not studied.

A.1 Probe configuration
The three meshes used for the probe mesh independence study are given in Fig. A.2,

with the number of elements.
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Fig. A.2.: Meshes used for the grid independence study with a probe. We call them coarse
(top, 4013 elements), fine (middle, 7226 elements) and refined (bottom, 10316
elements).

Let us first discuss the solution dependence with respect to the order. First, in
front of the probe (Fig. A.3 and Fig. A.4), there is a clear dependence on the order,
no matter the mesh refinement. Above order 3, all variables are correctly captured.
One can also see that, for the temperature field T , the profiles are well captured
with a polynomial reconstruction of degree 1. Along the stagnation line (Fig. A.5
and Fig. A.6), most variables are correctly captured by polynomial reconstructions of
degree 2. Once again, the temperature profile is correctly captured with degree 1. On
the other hand, the radial gradient of the radial velocity ∂rvr and axial velocity vz are
correctly captured from order 3. Finally, in the torch center (Fig. A.7 and Fig. A.8), a
general remark is that a reconstruction of polynomial order 3 is necessary to capture
the various profiles. No degree 1 solution is able to capture any of the fields, due
to the large gradients occurring in the torch. However, degree 2 captures quite
well the electric field profiles. In light of these observations, we choose polynomial
reconstructions of degree 3 and 4 in order to capture correctly the variations. Finally,
the mesh dependence study at p = 4 (Fig. A.9, A.10 and A.11) give the same result:
the solution does not change with mesh refinement. Consequently, the coarsest mesh
is used.
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A.1.1 Dependence of the solution with respect to the order
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Fig. A.3.: Order independence study for the probe configuration on the coarse (left), fine
(middle) and refined (right) meshes for the pressure fluctuation dp, axial vz and
radial vr velocities at ∆z = 35 mm from the probe front. The polynomial degree
of the method is p. r is the radial distance from the center line.
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T at ∆z = 35 mm from the probe front. The polynomial degree of the method is p.
r is the radial distance from the center line.
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Fig. A.5.: Order independence study for the probe configuration on the coarse (left), fine
(middle) and refined (right) meshes for the pressure fluctuation dp, axial vz and
radial gradient of the radial velocity ∂rvr at ∆z = 35 mm from the probe front.
The polynomial degree of the method is p. ∆z is the axial distance from the probe
front.
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Fig. A.6.: Order independence study for the probe configuration on the coarse (left), fine
(middle) and refined (right) meshes for the temperature T and axial temperature
gradient ∂zT at ∆z = 35 mm from the probe front. The polynomial degree of the
method is p. ∆z is the axial distance from the probe front.
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Fig. A.7.: Order independence study for the probe configuration on the coarse (left), fine
(middle) and refined (right) meshes for the pressure fluctuation dp, axial vz

and radial vr velocities in the torch center, at 24.3 cm from the torch inlet. The
polynomial degree of the method is p. r is the radial distance from the center line.
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Fig. A.8.: Order independence study for the probe configuration on the coarse (left), fine
(middle) and refined (right) meshes for the azimuthal velocity vθ, temperature T
and the real ERe

p and imaginary EIm
p parts of the plasma electric field in the torch

center, at 24.3 cm from the torch inlet. The polynomial degree of the method is p.
r is the radial distance from the center line.

A.1 Probe configuration 157



A.1.2 Dependence of the solution on the mesh size

Probe Front

0 2 4 6

−2

0

2

d
p

[P
a]

Coarse
Fine
Refined

0 2 4 6

60

70

80

v z
[m

/s
]

0 2 4 6
0

1

2

3

v r
[m

/s
]

0 2 4 6
0

10

20

30

v θ
[m

/s
]

0 2 4 6

4

6

·103

T
[K

]

Fig. A.9.: Mesh independence study for the probe configuration on the coarse, fine and
refined meshes for the pressure fluctuation dp, axial vz, radial vr and azimuthal vθ

velocities and temperature T at ∆z = 35 mm from the probe front. at order p = 4.
The abscissa r ([cm]) is the radial distance from the center line.
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Fig. A.10.: Mesh independence study for the probe configuration on the coarse, fine and
refined meshes for the pressure fluctuation dp, axial vz and radial gradient of
the radial velocity ∂rvr, temperature T and axial temperature gradient ∂zT at
∆z = 35 mm from the probe front at order p = 4. The abscissa ∆z ([cm]) is the
axial distance from the probe front.
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Fig. A.11.: Mesh independence study for the probe configuration on the coarse, fine and
refined meshes for the pressure fluctuation dp, axial vz, radial vr velocities in
the torch center and azimuthal velocity vθ, temperature T and the real ERe

p and
imaginary EIm

p parts of the plasma electric field at 24.3 cm from the torch inlet
at order p = 4. The abscissa r ([cm]) is the radial distance from the center line.
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A.2 Free stream configuration
The three meshes used for the free stream independence study are given in Fig. A.12.

In this configuration, only the radial profiles in the center of the torch and the radial
profile in the jet are studied.

Fig. A.12.: Meshes used for the grid independence study in free stream. We call them coarse
(top, 3055 elements), fine (middle, 5021 elements) and refined (bottom, 7338
elements).

Let us first discuss the solution dependence with respect to the order. First, in front
of the probe (Fig. A.13 and Fig. A.14), there is a clear dependence on the order, no
matter the mesh refinement. Above order 3, all variables are correctly captured. On
the contrary of the probe case, the p = 1 is not sufficient for the temperature field,
but p = 2 gives satisfactory results. In the torch center (Fig. A.15 and Fig. A.16), a
general remark is that a reconstruction of polynomial order 3 is necessary to capture
the various profiles. However, degree 2 captures quite well the electric field profiles.
In light of these observations, we choose polynomial reconstructions of degree 3 and
4 in order to capture correctly the variations. Finally, the mesh dependence study at
p = 4 (Fig. A.17 and A.18) give the same result: the solution does not change with
mesh refinement. Consequently, the coarsest mesh is used.
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A.2.1 Dependence of the solution with respect to the order

In the jet
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Fig. A.13.: Order independence for the free stream configuration study on the coarse (left),
fine (middle) and refined (right) meshes for the pressure fluctuation dp, axial vz

and radial vr velocities in the jet at 83.1 cm from the torch inlet. The polynomial
degree of the method is p. The abscissa r ([cm]) is the radial distance from the
center line.
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Fig. A.14.: Order independence study for the free stream configuration on the coarse (left),
fine (middle) and refined (right) meshes for the azimuthal velocity vθ and
temperature T in the jet at 83.1 cm from the torch inlet. The polynomial degree
of the method is p. The abscissa r ([cm]) is the radial distance from the center
line.
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Fig. A.15.: Order independence study for the free stream configuration on the coarse (left),
fine (middle) and refined (right) meshes for the pressure fluctuation dp, axial vz

and radial vr velocities in the torch center, at 24.3 cm from the torch inlet. The
polynomial degree of the method is p. r is the radial distance from the center
line.
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Fig. A.16.: Order independence study for the free stream configuration on the coarse (left),
fine (middle) and refined (right) meshes for the azimuthal velocity vθ, tempera-
ture T and the real ERe

p and imaginary EIm
p parts of the plasma electric field in

the torch center, at 24.3 cm from the torch inlet. The polynomial degree of the
method is p. r is the radial distance from the center line.
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A.2.2 Dependence of the solution on the mesh size

In the jet
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Fig. A.17.: Mesh independence study for the free stream case for the pressure fluctuation
dp, axial vz, radial vr and azimuthal velocity vθ and temperature T in the jet at
83.1 cm from the torch inlet at order p = 4. r ([cm]) is the radial distance from
the center line.

A.2 Free stream configuration 166



Torch center

0 2 4 6 8

0

10

20

30

d
p

[P
a]

Coarse
Fine
Refined

0 2 4 6 8
−20

0

20

40

60

v z
[m

/s
]

0 2 4 6 8

−10

−5

0

v r
[m

/s
]

0 2 4 6 8
0

20

40

v θ
[m

/s
]

0 2 4 6 8
0

0.5

1

·104

T
[K

]

0 2 4 6 8

−2

−1

0
·102

E
R

e
p

[V
/m

]

0 2 4 6 8
0

2

4
·102

E
I
m

p
[V

/m
]

Fig. A.18.: Mesh independence study for the free stream case for the pressure fluctuation dp,
axial vz, radial vr and azimuthal vθ velocities, temperature T and the real ERe

p

and imaginary EIm
p parts of the plasma electric field in the radial direction, at

24.3 cm from the torch inlet at order p = 4. r ([cm]) is the radial distance from
the center line.
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