Publications of Rudi Cloots
Bookmark and Share    
See detailSpray drying synthesis of Na3V2(PO4)2F3/C cathode material for Na-ion batteries: study of the effect of the carbon source on electrochemical performance
Eshraghi, Nicolas ULiege; Bodart, Jérôme ULiege; Mahmoud, Abdelfattah ULiege et al

Poster (2018, November 25)

Lithium-ion batteries have enjoyed great success and have outperformed other rechargeable battery system since 1980. However, Li-ion batteries face many challenges and limitations: safety, the low ... [more ▼]

Lithium-ion batteries have enjoyed great success and have outperformed other rechargeable battery system since 1980. However, Li-ion batteries face many challenges and limitations: safety, the low abundance of lithium in the Earth’s crust. Recently, Sodium-ion batteries attracted a lot of interest as a potential alternative to lithium-ion batteries for large-scale energy storage applications, due to the large natural abundance and lower cost of sodium. In recent years, fluorophosphates with the NASICON (Na Super-Ionic Conductor) type structure are considered among the most interesting series of cathode materials for Li/Na-ion batteries, because they exhibit rich chemistry, attractive lithium/sodium insertion properties and thus offer promising electrochemical properties [1]. Na3V2(PO4)2F3 (NVPF) attracted high attention thanks to its promising electrochemical properties. The inductive effects of both PO43- and F- allow for a high working potential combined with a high theoretical specific capacity due to the multiple oxidation states of vanadium[1-2]. One of the key drawbacks of Na3V2(PO4)2F3 electrodes is their low intrinsic electronic conductivity. NVPF and NVPF/carbon composite materials were prepared by spray-drying method using the same conditions used in our previous work [2]. Spray drying is a cost-effective and easily up-scalable route to prepare homogeneous multi-component powders, thus making it a suitable method to incorporate carbon in the composite powder. We used different carbon sources like conductive carbons (MWCNTs, Carbon Black, etc) and organic sources (PVA, Citric Acid, Ascorbic acid, etc) to prepare NVPF/carbon composite powders. the structural, electrochemical, and morphological properties of the synthesized Na3V2(PO4)2F3/C samples were systematically investigated in order to understand the influence of carbon source on structural and morphological properties and most importantly electrochemical performance of NVPF and NVPF/carbon composite cathode materials for Na-ion batteries. The chemical diffusion of Na ions was studied using results obtained by varying scan rates in cyclic voltammetry measurements. Raman spectroscopy is used to evaluate the quality in disordered carbon materials and its electronic conductivity [3] and compared the results with the results from EIS and cycling performance of different samples. Acknowledgments The authors are grateful to University of Liege and FRS-FNRS for grants. Part of this work was supported by the Walloon Region under the “PE PlanMarshall2.vert” program (BATWAL – 1318146). A. Mahmoud thanks to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n° 1510399. References: [1] R. A. Shakoor, D-H. Seo, H. Kim, Y-U. Park, J. Kim, S-W. Kim, H. Gwon, S. Leec and K. Kang, Mater. Chem. 22 (2012) 20535–20541. [2] N. Eshraghi, S. Caes, A. Mahmoud, R. Cloots, B. Vertruyen, F. Boschin, Electrochimica Acta, 228, (2017), 319-324. [3] A. Mahmoud, S. Caes, M. Brisbois, R. P. Hermann, L. Berardo, A. Schrijnemakers, C. Malherbe, G. Eppe, R. Cloots, B. Vertruyen, F. Boschin J Solid State Electrochem. 22 (2018) 103-112. [less ▲]

Detailed reference viewed: 123 (15 ULiège)
See detailElectrochemical mechanism and effect of carbon addition during hydrothermal synthesis to improve the electrochemical performance of Fe1.19(PO4)(OH)0.57(H2O)0.43 cathode material for Li-ion batteries
Mahmoud, Abdelfattah ULiege; karegeya, Claude; Sougrati, Moulay Tahar et al

Poster (2018, November 25)

Since the introduction of lithium-ion batteries (LIBs) to market in 1991, their performance has improved significantly, which has been achievable through development in materials technologies. However ... [more ▼]

Since the introduction of lithium-ion batteries (LIBs) to market in 1991, their performance has improved significantly, which has been achievable through development in materials technologies. However, further breakthroughs are still needed to ameliorate cycle-life, safety and energy density of LIBs. This requires new electrode materials and a detailed understanding of the electrochemical mechanisms during cycling. Transition metal phosphates are interesting candidates as cathode materials for LIBs [1]. In this work, we report the electrochemical performance of FPHH/C and FPHH/CNT composites where FPHH represents Fe1.19(PO4)(OH)0.57(H2O)0.43 while carbon black and carbon nanotubes (CNT) were used as precursors in the one-pot hydrothermal synthesis, respectively. We show that the addition of conducting carbon black into the solution has a strong influence on reducing the particle size and tailoring their morphology, but does not interfere with the formation of the FPHH phase. Thanks to its favorable microstructural characteristics, the FPHH-10 wt% C and FPHH-20 wt% C materials exhibited good performance [2]. The CNT also improve the performance of FPHH such as capacity retention (500 cycles at 1 C). The mechanisms of lithiation-delithiation were investigated by combining operando X-ray diffraction and 57Fe Mössbauer spectroscopy. FPHH undergoes a monophasic reaction based on Fe3+/Fe2+ redox process. However, the variations of the lattice parameters and 57Fe quadrupole splitting indicate a more complex mechanism than a random occupation of the vacant sites within FPHH. This can be related to the peculiar structure of FPHH formed by chains of face sharing (Fe0.6•0.4)O6 octahedra connected by PO4 tetrahedra and by channels for Li diffusion along [100] and [010] directions. The existence of Fe vacancies provide interconnections between the one-dimensional channels, improving lithium diffusion within FPHH. This mechanism, combined with the addition carbon black or nanotubes in the solution prior to hydrothermal treatment as a simple and effective way to reduce particle size and improve electronic conductivity, provides good cycle life and rate capability for FPHH. Acknowledgements A. Mahmoud is grateful to University of Liege and FRS-FNRS for the grants and thanks to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n° 1510399. Part of this work was supported by the Walloon Region under the “PE PlanMarshall2.vert” program (BATWAL – 1318146). References 1. C. Karegeya, A. Mahmoud, F. Hatert, B. Vertruyen, R. Cloots, P.E. Lippens, F. Boschini, Journal of Power Sources 388 (2018) 57-64. 2. C. Karegeya, A. Mahmoud, R. Cloots, B. Vertruyen, F. Boschini, Electrochim. Acta 250 (2017) 49-58. [less ▲]

Detailed reference viewed: 67 (15 ULiège)
See detailFlexible thin-films for battery electrodes
Piffet, Caroline ULiege; Boschini, Frédéric ULiege; Cloots, Rudi ULiege

Patent (2018)

A composition comprising: a. An at least partially hydrolysed polyvinyl acetate component having an hydrolysation degree of at least 5%, b. A polyalkylene glycol component having a number average ... [more ▼]

A composition comprising: a. An at least partially hydrolysed polyvinyl acetate component having an hydrolysation degree of at least 5%, b. A polyalkylene glycol component having a number average molecular mass Mn lower than 9000 g/mol and consisting of one or more substances selected from the group consisting of polyethylene glycol, polypropylene glycol, copolymers of ethylene glycol and propylene glycol, and their derivatives, c. a positive or negative electrode active component, and d. a conductive component, wherein the mass ratio between the at least partially hydrolysed polyvinyl acetate component and the positive or negative electrode active component equals at least 0.12 and at most 0.30, and wherein the mass ratio between the polyalkylene glycol component and the positive or negative electrode active component equals at least 0.012 and at most 0.10 [less ▲]

Detailed reference viewed: 37 (18 ULiège)
Full Text
See detailHeterostructured ZnO/RuO2 photocatalyst: influence of sputtering temperature on the photocatalytic and photoelectrochemical properties
Periyannan, Shanmugapriya ULiege; Manceriu, Laura ULiege; Colson, Pierre ULiege et al

Poster (2018, June 19)

Influence of thermal conditions on the performance of heterostructured ZnO/RuO2 in their photocatalytic and photoelectrochemical properties Photocatalytic materials are highly investigated due its vital ... [more ▼]

Influence of thermal conditions on the performance of heterostructured ZnO/RuO2 in their photocatalytic and photoelectrochemical properties Photocatalytic materials are highly investigated due its vital role in wide variety of applications that could help in tackling present day environmental problems. Inspite of wide and basic investigation for several decades on promising materials, the best photocatalyst is still under research. But the decades long research helped in better understanding of the materials and mechanisms involved. This led to the improvement of materials under examination from homostructured to modified materials. One of the major limiting factors of homostructured (single) photocatalyst is the fast recombination of excited charge carriers. Among several modification techniques used to enhance the lifetime of charge carriers, heterostructure formation with two different materials is very promising. Here, we report the formation of ZnO/RuO2 by involving two steps: ZnO nanorods are grown on FTO by hydrothermal method, followed by physical deposition of RuO2 (At room temperature [RT], At RT followed by Insitu-Post Annealing at 250° & At High Temperature [HT] 400°), resulting in the formation of a heterostructure. The influence of different thermal conditions on the course of RuO2 deposition has been characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) and Photo Luminescence (PL). The crystallinity of the material and its orientation was examined by XRD. Morphological studies by SEM revealed the growth of randomly oriented ZnO nanorods on FTO, whereas images of ZnO/RuO2 resulted in no structural difference. A very thin layer of RuO2 covering the surface of ZnO nanorods was observed through TEM. This displayed the core-shell type of heterostructure formation. XPS studies of ZnO/RuO2 under varying conditions implied the shift towards lower binding energy, which indicates the bond sharing between both materials. Interface studies by step-wise deposition of RuO2 on ZnO, showed the evidence for formation of band bending between two materials, which play an important role in enhancing the charge carrier separation. PL of homostructured and heterostructured materials led to the understanding with carrier recombination process. There was evidence of significant quenching for ZnO/RuO2, compared to that of ZnO. Among ZnO/RuO2 (At RT, RT-PAd, HT) – deposition at 400° disclosed higher quenching, i.e., reduced rate of recombination. Photocatalytic and Photoelectrochemical investigations was clearly correlating to the characterizational studies, confirming the enhancement in performance with heterostructure, especially with the ZnO/RuO2 (400°). [less ▲]

Detailed reference viewed: 52 (2 ULiège)
See detailInsight into the electrical properties damaging with quenching of the SnO2:F layers
Manceriu, Laura ULiege; Maho, Anthony ULiege; Labrugère, Christine et al

Conference (2018, June 18)

Detailed reference viewed: 17 (3 ULiège)
Full Text
See detailNa1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries
Karegeya, Claude; Mahmoud, Abdelfattah ULiege; Hatert, Frédéric ULiege et al

in Journal of Power Sources (2018), 388

Abstract A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were ... [more ▼]

Abstract A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were determined by 57Fe Mössbauer spectroscopy and powder X-ray diffraction Rietveld refinements and confirmed by magnetic measurements. The structural formula □0.75Na1.25Ni1.25Fe1.75(PO4)3 was obtained showing a significant amount of Na vacancies, which enhances Li diffusion. Na1.25Ni1.25Fe1.75(PO4)3 was used as negative and positive electrode material and shows excellent electrochemical performances. As negative electrode in the voltage range 0.03-3.5 V vs. Li+/Li, the first discharge at current density of 40 mA g−1 delivers a specific capacity of 1186 mAh g−1, which is almost three times its theoretical capacity (428 mAh g−1). Then, reversible capacity of 550 mAh g−1 was obtained at 50 mA g−1 with high rate capability (150 mAh g−1 at 500 mA g−1) and capacity retention of 350 cycles. As positive electrode material, specific capacities of about 145 and 99 mAh g−1 were delivered at current densities of 5 and 50 mA g−1, respectively, in the voltage range of 1.5–4.5 V vs. Li+/Li. In addition, we show that the use of solvothermal synthesis contributes to the synthesis of small sized particles leading to good electrochemical performances. [less ▲]

Detailed reference viewed: 50 (31 ULiège)
Full Text
See detailComposites Fe1.19(PO4)(OH)0.57(H2O)0.43/C comme matériaux d'électrode positive pour batteries Li-ion
Mahmoud, Abdelfattah ULiege; karegeya, Claude; Sougrati, Moulay Tahar et al

Conference (2018, May 17)

Les matériaux composites Fe1.19(PO4)(OH)0.57(H2O)0.43-C (FPHH-C) ont été obtenus par synthèse hydrothermale en une seule étape. L'addition du noir de carbone dans la solution contenant les précurseurs ... [more ▼]

Les matériaux composites Fe1.19(PO4)(OH)0.57(H2O)0.43-C (FPHH-C) ont été obtenus par synthèse hydrothermale en une seule étape. L'addition du noir de carbone dans la solution contenant les précurseurs avant la réaction hydrothermale (2, 10 et 20 %m) a conduit à une réduction de la taille des particules de FPHH avec une bonne dispersion du carbone conducteur électronique autour et entre les particules. La caractérisation des composites par diffraction des rayons X et spectroscopie Mössbauer du 57Fe montre que l'ajout de carbone ne modifie pas la pureté des matériaux mais améliore significativement les propriétés électrochimiques pour FPHH - 10 %m et FPHH - 20 %m par rapport à FPHH et FPHH - 2 %m [1]. Une étude du mécanisme d'intercalation et de désintercalation du lithium a été effectuée en associant diffraction des rayons X et spectroscopie Mössbauer operando [2]. L’analyse de l’ensemble des résultats montre que ce mécanisme est une réaction d'intercalation monophasique réversible associée au couple redox Fe3+/Fe2+. L’excellente réversibilité observée sur plus de 500 cycles avec des variations volumiques de 10% confirme la bonne stabilité de ce matériau. Remerciements Ab. Mahmoud remercie la région wallonne pour le projet RESIBAT n°1510399. Références 1. C. Karegeya, A. Mahmoud, R. Cloots, B. Vertruyen, F. Boschini, Electrochim. Acta 250 (2017) 49-58. 2. K. Lasri, A. Mahmoud, I. Saadoune, M-T. Sougrati, L. Stievan, P-E. Lippens, R. P. Hermann, H. Ehrenberg, Sol. Energ. Mater. & Sol. Cells148 (2016) 11–19. [less ▲]

Detailed reference viewed: 49 (16 ULiège)
Full Text
See detailLa souris, le patient, et le faux expert. Décryptage d'une mystification.
Bakker, Julie ULiege; Balthazart, Jacques ULiege; Baron, Frédéric ULiege et al

Article for general public (2018)

La recherche sur animaux est actuellement encadrée de façon stricte en Wallonie comme dans toute l'Union Européenne (voir l'article de Marc Vandenheede publié dans le Vif). Cette législation et les ... [more ▼]

La recherche sur animaux est actuellement encadrée de façon stricte en Wallonie comme dans toute l'Union Européenne (voir l'article de Marc Vandenheede publié dans le Vif). Cette législation et les contrôles qui y sont associés induisent de nombreuses contraintes pratiques, des charges administratives et des coûts financiers importants que les chercheurs seraient certainement heureux d'éviter s'il existait une alternative à l'expérimentation animale. [less ▲]

Detailed reference viewed: 143 (32 ULiège)
Full Text
See detailAnalyse détaillée de la seconde version de l’avant-projet de Code du bien-être animal wallon. Lecture commentée au 21/03/2018 du Chapitre 8 (Expérimentation animale)
Drion, Pierre ULiege; Corhay, Albert ULiege; Haubruge, Eric ULiege et al

Report (2018)

La compétence « bien-être animal », auparavant fédérale, a été régionalisée en juillet 2014. Ce projet de code vise à remplacer les dispositions légales en vigueur (la Loi de 1984 telle que modifiée par ... [more ▼]

La compétence « bien-être animal », auparavant fédérale, a été régionalisée en juillet 2014. Ce projet de code vise à remplacer les dispositions légales en vigueur (la Loi de 1984 telle que modifiée par les décrets du Gouvernement wallon). Certains éléments sont repris tels quels de la Directive 2010/63. Cela est nécessaire car la Directive européenne en tant que telle n’a pas de force obligatoire en Belgique. Elle doit être transcrite par un instrument législatif (avant, la Loi de 1984 et ses modifications, aujourd’hui, le projet de code pour la Région wallonne). Certains aspects semblent flous, mais renvoient à des dispositions que le Gouvernement doit encore prendre (au travers d’arrêtés du Gouvernement wallon, comme le faisaient avant les nombreux arrêtés royaux et du gouvernement qui réglementent la matière). Les arrêtés d’exécution devront obligatoirement tenir compte de la Directive européenne et s’inspirer de dispositions actuellement en vigueur. [less ▲]

Detailed reference viewed: 73 (8 ULiège)
Full Text
See detailSpray coating as scalable deposition technique of TiO2 blocking layer to boost the perovskite solar cell performances
Schrijnemakers, Audrey ULiege; Dewalque, Jennifer ULiege; Spronck, Gilles ULiege et al

Poster (2018, February 28)

To achieve high efficiency, the blocking layer (BL) is of critical importance in perovskite solar cells. Indeed, substrate has to be covered by a dense TiO2 film to prevent short circuits in the final PV ... [more ▼]

To achieve high efficiency, the blocking layer (BL) is of critical importance in perovskite solar cells. Indeed, substrate has to be covered by a dense TiO2 film to prevent short circuits in the final PV cell. In this study, we compare the spin coating (SC) technique - commonly used for the TiO2 blocking layer deposition in solid-state methylammonium lead triiodide perovskite (MaPbI3)-based solar cells - with ultrasonic spray pyrolysis (USP). Ultrasonic spray coating is a promising non-vacuum pathway to manufacture blocking layer that can be implemented from laboratory to industrial scale. The BL microstructure is characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). Although both deposition techniques lead to similar coating thickness and structure, the cyclic voltammetry measurements highlight the higher blocking capability of the ultrasonic spray pyrolysis BL. The BLs were tested in complete solar cell devices. Performance of perovskite solar cells is discussed and related to the morphology and the conductivity of the TiO2 blocking layers. [less ▲]

Detailed reference viewed: 40 (15 ULiège)
Full Text
See detailOpal-like photoanodes with photonic effects in macroporous perovskite solar cells
Dewalque, Jennifer ULiege; Baron, Damien ULiege; Spronck, Gilles ULiege et al

Poster (2018, February 28)

Organic-inorganic metal halide perovskite compounds, used either in mesoscopic or planar solar cells architectures, have allowed preparing highly efficient solid-state devices (>20%). In mesoscopic solar ... [more ▼]

Organic-inorganic metal halide perovskite compounds, used either in mesoscopic or planar solar cells architectures, have allowed preparing highly efficient solid-state devices (>20%). In mesoscopic solar cells, a mesoporous TiO2 scaffold is incorporated into the cells. However, because of the small pore size compared to the wavelengths of visible light, the scaffold barely scatters light. In this work, we propose to design periodically structured TiO2 scaffold from colloidal crystal templating fabrication method. Polystyrene beads with diameters comparable to visible light wavelengths are used as structuring agent. The resulting opal-like photonic structure will strongly interact with light and increase light harvesting. The photoanode microstructure is characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). In parallel, light interaction is modeled in order to find the best compromise in terms of photonic architecture. Sunlight absorption by the solar cells is presented and discussed with dependency of pore sizes and number of opal-like layers. [less ▲]

Detailed reference viewed: 94 (29 ULiège)
See detailSpray-drying synthesis of Na2Ti3O7 and electrochemical characterization using different electrolytes
Piffet, Caroline ULiege; Mahmoud, Abdelfattah ULiege; Vertruyen, Bénédicte ULiege et al

Poster (2018)

Na2Ti3O7 is considered as a promising intercalation anode material for sodium ion batteries thanks to its low insertion potential (0.3V vs Na0/Na+) and relatively good theoretical capacity (178 mAh/g) [1 ... [more ▼]

Na2Ti3O7 is considered as a promising intercalation anode material for sodium ion batteries thanks to its low insertion potential (0.3V vs Na0/Na+) and relatively good theoretical capacity (178 mAh/g) [1,2,3]. Nevertheless, it has a poor long term cycling stability that still needs to be solved. Besides, the importance of the choice of the electrolyte for Na-ion batteries was recently reviewed [4]. We report here a new spray-drying synthesis of Na2Ti3O7. By contrast to the solid-state synthesis, the advantages of the spray-drying method are a high homogeneity of the precursors and good control of the particle size and morphology (typically spherical particles of 3-30 µm, depending on the injection mode, concentration, pressure, temperature, etc.). Therefore, the heat treatment time is decreased. In this work, we studied the formation mechanism of Na2Ti3O7. We identified sequences of intermediate phases, starting from spray-dried TiO2 and NaOH or Na2CO3 precursors. In order to improve the performances of our material, we also tested the influence of the electrolyte on the electrochemical performances in half cell. The effect of the solvent (PC, EC, DMC and Diglyme) but also of the salt (NaClO4, NaPF6, NaTFSI, NaFSI and NaOTf) was examined and significant differences were observed. [1] Zukalová et al., Journal of Solid State Electrochemistry, 2018, 22, 2545–2552 [2] J. Nava-Avendaño et al., Journal of Material Chemistry A, 2015, 3, 22280-22286 [3] M. Zarrabeitia et al., Acta Materialia, 2016, 104, 125-130 [4] A. Ponrouch et al., Journal of Material Chemistry A, 2015, 3, 22-42 [less ▲]

Detailed reference viewed: 31 (3 ULiège)
Full Text
See detailLi4Ti5O12 powders by spray-drying: influence of the solution concentration and particle size on the electrochemical properties
Jamin, Claire; Jungers, Thomas ULiege; Piffet, Caroline ULiege et al

in Journal of Physics. Conference Series (2018), 1081

The lithium battery electrode compound Li4Ti5O12 was synthesized by calcination of precursor powders obtained through spray-drying of solutions prepared with titanium isopropoxide and lithium nitrate. X ... [more ▼]

The lithium battery electrode compound Li4Ti5O12 was synthesized by calcination of precursor powders obtained through spray-drying of solutions prepared with titanium isopropoxide and lithium nitrate. X-ray diffraction and thermal analysis coupled to mass spectrometry show that single phase crystalline Li4Ti5O12 particles can be obtained after calcination at 800 °C for 2 hours. Decreasing the solution concentration leads to smaller particle sizes but also to an unexpected decrease of the electrochemical capacity, probably related to the presence of residual Li2TiO3. On the contrary, the capacity of the Li4Ti5O12 powder prepared with the high concentration solution can be increased from 150 mAh/g to 165 mAh/g (C/4 rate) by grinding. These results highlight the fact that smaller particles do not systematically display better performances for Li+ intercalation/desintercalation and confirm the need for a comprehensive approach including parameters such as crystallinity, phase purity or agglomeration. [less ▲]

Detailed reference viewed: 28 (12 ULiège)
Full Text
See detailFacile solvothermal synthesis of Na1.5□0.5Mn1.5Fe1.5(PO4)3: Electrochemical study as a dual electrode material for lithium-ion batteries
Karegeya, C.; Mahmoud, Abdelfattah ULiege; Hatert, Frédéric ULiege et al

in Solid State Ionics (2018), 326

Na1.5□0.5Mn1.5Fe1.5(PO4)3 (where □ denotes vacancies) microrods were obtained through a solvothermal synthesis in ethylene glycol. The combination of the XRD, Mössbauer and magnetic analyses confirm that ... [more ▼]

Na1.5□0.5Mn1.5Fe1.5(PO4)3 (where □ denotes vacancies) microrods were obtained through a solvothermal synthesis in ethylene glycol. The combination of the XRD, Mössbauer and magnetic analyses confirm that the sodium vacancies in the Na1.5□0.5Mn1.5Fe1.5(PO4)3 structure are linked to the oxidation of Mn and Fe transition metals. The electrochemical tests have shown that Na1.5□0.5Mn1.5Fe1.5(PO4)3 is a dual electrode material for Li-ion batteries. The electrochemical study in the potential range of 1.5–4.5 V indicate that such material can be used as 3 V cathode with specific capacities of 109, 97, and 80 mAh·g−1 at current densities of 5, 10, and 20 mA·g−1, respectively. When it is tested in the potential range of 0.03–3.0 V as negative electrode material, it delivers a reversible capacity of about 170 mAh·g−1 at 200 mA·g−1 current density during >100 cycles. © 2018 Elsevier B.V. [less ▲]

Detailed reference viewed: 20 (3 ULiège)