Publications of Michaël Gillon
Bookmark and Share    
Full Text
See detailLong-term activity and outburst of comet C/2013 A1 (Siding Spring) from narrow-band photometry and long-slit spectroscopy
Opitom, Cyrielle ULiege; Guilbert-Lepoutre, A.; Jehin, Emmanuel ULiege et al

in Astronomy and Astrophysics (2016), 589

In this paper, we present a unique data set of more than one year's worth of regular observations of comet C/2013 A1(Siding Spring) with TRAPPIST in Chile, along with low-resolution spectra obtained with ... [more ▼]

In this paper, we present a unique data set of more than one year's worth of regular observations of comet C/2013 A1(Siding Spring) with TRAPPIST in Chile, along with low-resolution spectra obtained with the ESO/VLT FORS 2 instrument. The comet made a close approach to Mars on October 19, 2014 and was then observed by many space and ground-based telescopes. We followed the evolution of the OH, NH, CN, $\mathrm{C_3}$, and $\mathrm{C_2}$ production rates as well as the $Af\rho$ parameter as a proxy for the dust production. We detected an outburst two weeks after perihelion, with gas and dust production rates being multiplied by a factor five within a few days. By modelling the shape of the CN and $\mathrm{C_2}$ radial profiles, we determined that the outburst happened around on November 10 around 15:30 UT ($\pm$ 5h) and measured a gas ejection velocity of $1.1\pm0.2$ km/s. We used a thermal evolution model to reproduce the activity pattern and outburst. Our results are consistent with the progressive formation of a dust mantle explaining the shallow dependence of gas production rates, which may be partially blown off during the outburst. We studied the evolution of gas composition, using various ratios such as CN/OH, $\mathrm{C_2}$/OH, or $\mathrm{C_3}$/OH, which showed little or no variation with heliocentric distance including at the time of the outburst. This indicates a relative level of homogeneity of the nucleus composition. [less ▲]

Detailed reference viewed: 51 (13 ULiège)
Full Text
See detailTRAPPIST photometry and imaging monitoring of comet C/2013 R1 (Lovejoy): Implications for the origin of daughter species
Opitom, Cyrielle ULiege; Jehin, Emmanuel ULiege; Manfroid, Jean ULiege et al

in Astronomy and Astrophysics (2015), 584

We report the results of the narrow-band photometry and imaging monitoring of comet C/2013 R1 (Lovejoy) with the robotic telescope TRAPPIST (La Silla observatory). We gathered around 400 images over 8 ... [more ▼]

We report the results of the narrow-band photometry and imaging monitoring of comet C/2013 R1 (Lovejoy) with the robotic telescope TRAPPIST (La Silla observatory). We gathered around 400 images over 8 months pre- and post-perihelion between September 12, 2013 and July 6, 2014. We followed the evolution of the OH, NH, CN, C[SUB]3[/SUB], and C[SUB]2[/SUB] production rates computed with the Haser model, as well as the evolution of the dust production. All five gas species display an asymmetry about perihelion, since the rate of brightening is steeper than the rate of fading. The study of the coma morphology reveals gas and dust jets that indicate one or several active zone(s) on the nucleus. The dust, C[SUB]2[/SUB], and C[SUB]3[/SUB] morphologies present some similarities, while the CN morphology is different. OH and NH are enhanced in the tail direction. The study of the evolution of the comet activity shows that the OH, NH, and C[SUB]2[/SUB] production rate evolution with the heliocentric distance is correlated to the dust evolution. The CN and, to a lesser extent, the C[SUB]3[/SUB] do not display such a correlation with the dust. This evidence and the comparison with parent species production rates indicate that C[SUB]2[/SUB] and C[SUB]3[/SUB], on one hand, and OH and NH, on the other, could be - at least partially - released from organic - rich grains and icy grains. On the contrary, all evidences point to HCN being the main parent of CN in this comet. [less ▲]

Detailed reference viewed: 66 (14 ULiège)
Full Text
See detailThe HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun
Motalebi, F.; Udry, S.; Gillon, Michaël ULiege et al

in Astronomy and Astrophysics (2015), 584

We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their ... [more ▼]

We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms[SUP]-1[/SUP]) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M[SUB]⊕[/SUB] and 1.606 ± 0.086 R[SUB]⊕[/SUB], leading to a mean density of 5.76 ± 1.09 g cm[SUP]-3[/SUP], suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M[SUB]⊕[/SUB] moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M[SUB]⊕[/SUB], at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M[SUB]⊕[/SUB] orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU. The photometric time series and radial velocities used in this work are available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72</A> [less ▲]

Detailed reference viewed: 35 (3 ULiège)
Full Text
See detailLarger and faster: revised properties and a shorter orbital period for the WASP-57 planetary system from a pro-am collaboration
Southworth, John; Mancini, L.; Tregloan-Reed, J. et al

in Monthly Notices of the Royal Astronomical Society (2015), 454

Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present 10 transit light curves from amateur telescopes, on which this discovery was based, 13 ... [more ▼]

Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present 10 transit light curves from amateur telescopes, on which this discovery was based, 13 transit light curves from professional facilities which confirm and refine this finding, and high-resolution imaging which show no evidence for nearby companions. We use these data to determine a new and precise orbital ephemeris, and measure the physical properties of the system. Our revised orbital period is 4.5 s shorter than found from the discovery data alone, which explains the early occurrence of the transits. We also find both the star and planet to be larger and less massive than previously thought. The measured mass and radius of the planet are now consistent with theoretical models of gas giants containing no heavy-element core, as expected for the subsolar metallicity of the host star. Two transits were observed simultaneously in four passbands. We use the resulting light curves to measure the planet's radius as a function of wavelength, finding that our data are sufficient in principle but not in practise to constrain its atmospheric properties. We conclude with a discussion of the current and future status of transmission photometry studies for probing the atmospheres of gas-giant transiting planets. [less ▲]

Detailed reference viewed: 38 (1 ULiège)
Full Text
See detailFive years of comet narrow band photometry and imaging with TRAPPIST
Opitom, Cyrielle ULiege; Jehin, Emmanuel ULiege; Manfroid, Jean ULiege et al

in Bulletin of the American Astronomical Society (2015, November 01), 47

TRAPPIST is a 60-cm robotic telescope in La Silla Observatory [1] mainly dedicated to the study of exoplanets and comets. The telescope is equipped with a set of narrow band cometary filters designed by ... [more ▼]

TRAPPIST is a 60-cm robotic telescope in La Silla Observatory [1] mainly dedicated to the study of exoplanets and comets. The telescope is equipped with a set of narrow band cometary filters designed by the NASA for the Hale-Bopp observing campaign [2]. Since its installation in 2010, we gathered a high quality and homogeneous data set of more than 30 bright comets observed with narrow band filters. Some comets were only observed for a few days but others have been observed weekly during several months on both sides of perihelion. From the images, we derived OH, NH, CN, C[SUB]2[/SUB], and C[SUB]3[/SUB] production rates using a Haser [3] model in addition to the Afρ parameter as a proxy for the dust production. We computed production rates ratios and the dust color for each comet to study their composition and followed the evolution of these ratios and colors with the heliocentric distance.The TRAPPIST data set, rich of more than 10000 images obtained and reduced in an homogeneous way, allows us to address several fundamental questions such as the pristine or evolutionary origin of composition differences among comets. The evolution of comet activity with the heliocentric distance, the differences between species, and from comet to comet, will be discussed. Finally, the first results about the one year campaign on comet C/2013 US10 (Catalina) and our recent work on the re-determination of Haser scalelengths will be presented.[1] Jehin et al., The Messenger, 145, 2-6, 2011[2] Farnham et al., Icarus, 147, 180-204, 2000[3] Haser, Bulletin de l’Académie Royal des Sciences de Belgique,63, 739, 1957 [less ▲]

Detailed reference viewed: 40 (8 ULiège)
Full Text
See detailA rocky planet transiting a nearby low-mass star
Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David et al

in Nature (2015), 527

M-dwarf stars—hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun—are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent ... [more ▼]

M-dwarf stars—hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun—are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere. [less ▲]

Detailed reference viewed: 65 (7 ULiège)
Full Text
See detailPluto's atmosphere from stellar occultations in 2012 and 2013
Dias-Oliveira, Alex; Sicardy, Bruno; Lellouch, Emmanuel et al

in Bulletin of the American Astronomical Society (2015, November 01), 47

We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large ... [more ▼]

We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large telescopes (including the 8.2-m VLT at ESO/Paranal). The high SNR ratios and multi-chord coverage provide amoung the best Pluto atmospheric profiles ever obtained from the ground.We show that a spherically symmetric, clear (no-haze) and pure N2 atmosphere with a unique temperature profile satisfactorily fits the twelve lightcurves provided by the two events. We find, however, a small but significant increase of pressure of 6% (6-sigma level) between the two dates, with values of 2.16 ± 0.2 and 2.30 ± 0.01 μbar at the reference radius 1275 km, respectively.We provide atmospheric constrains between 1190 km and 1450 km from Pluto's center, and we determine the temperature profile with accuracy of a few km in vertical scale. Our model shows a stratosphere with strong positive gradient between 1190 km (at 36 K, 11 μbar) and r =1215 km (6.0 μbar), where a temperature maximum of 110 K is reached. Above it is a mesosphere with negative thermal gradient of -0.2 K/km up to 1,390 km (0.25 μbar), at which point, the mesosphere connects itself to a more isothermal upper branch at 81 K. This profile provides (assuming no troposphere) a Pluto surface radius of 1190 ± 5 km, consistent with preliminary values obtained by New Horizons. Currently measured CO abundances are too low to explain the negative mesospheric thermal gradient. We explore the possibility of an HCN (recently detected by ALMA) cooling. This model, however, requires largely supersaturated HCN. Zonal winds and vertical compositional variations of the atmosphere are also unable to explain the observed mesospheric trend.These events are the last useful ground-based occultations recorded before the 29 June 2015 occultation observed from Australia and New Zealand, and before the NASA's New Horizons flyby of July 2015. This work can serve as a benchmark in the New Horizons context, enabling comparisons between ground-based and space results concerning Pluto's atmospheric structure and temporal evolution. [less ▲]

Detailed reference viewed: 45 (7 ULiège)
Full Text
See detailCharacterization of the K2-19 Multiple-Transiting Planetary System via High-Dispersion Spectroscopy, AO Imaging, and Transit Timing Variations
Narita, Norio; Hirano, Teruyuki; Fukui, Akihiko et al

in Astrophysical Journal (2015), 815

K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ~ 7 $R_{Earth}$ (inner planet b) and ~ 4 $R_{Earth}$ (outer planet c) have orbits that are nearly in a 3 ... [more ▼]

K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ~ 7 $R_{Earth}$ (inner planet b) and ~ 4 $R_{Earth}$ (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present results of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2m telescope. We find that the host star is relatively old (>8 Gyr) late G-type star ($T_{eff}$ ~ 5350 K, $M_s$ ~ 0.9 $M_{Sun}$, and $R_{s}$ ~ 0.9 $R_{Sun}$). We do not find any contaminating faint objects near the host star which could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2m telescope, TRAPPISTCAM on the TRAPPIST 0.6m telescope, and MuSCAT on the OAO 1.88m telescope. We confirm the presence of transit-timing variations, as previously reported by Armstrong and coworkers. We model the observed transit-timing variations of the inner planet using the synodic chopping formulae given by Deck & Agol (2015). We find two statistically indistinguishable solutions for which the period ratios ($P_{c}/P_{b}$) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet $P_b$ ~ 7.921 days and the mass of the outer planet $M_c$ ~ 20 $M_{Earth}$. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet. [less ▲]

Detailed reference viewed: 37 (2 ULiège)
Full Text
See detailTests of the Planetary Hypothesis for PTFO 8-8695b
Yu, Liang; Winn, Joshua N.; Gillon, Michaël ULiege et al

in Astrophysical Journal (2015), 812

The T Tauri star PTFO 8-8695 exhibits periodic fading events that have been interpreted as the transits of a giant planet on a precessing orbit. Here we present three tests of the planet hypothesis. First ... [more ▼]

The T Tauri star PTFO 8-8695 exhibits periodic fading events that have been interpreted as the transits of a giant planet on a precessing orbit. Here we present three tests of the planet hypothesis. First, we sought evidence for the secular changes in light-curve morphology that are predicted to be a consequence of orbital precession. We observed 28 fading events spread over several years and did not see the expected changes. Instead, we found that the fading events are not strictly periodic. Second, we attempted to detect the planet's radiation, based on infrared observations spanning the predicted times of occultations. We ruled out a signal of the expected amplitude. Third, we attempted to detect the Rossiter-McLaughlin effect by performing high-resolution spectroscopy throughout a fading event. No effect was seen at the expected level, ruling out most (but not all) possible orientations for the hypothetical planetary orbit. Our spectroscopy also revealed strong, time-variable, high-velocity Hα and Ca H & K emission features. All these observations cast doubt on the planetary hypothesis, and suggest instead that the fading events represent starspots, eclipses by circumstellar dust, or occultations of an accretion hotspot. [less ▲]

Detailed reference viewed: 43 (4 ULiège)
Full Text
See detailThe K2-ESPRINT Project I: Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail
Sanchis-Ojeda, R.; Rappaport, S.; Pallé, E. et al

in Astrophysical Journal (2015), 812(2), 112

We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from ∼0% to 1.3%, are suggestive of ... [more ▼]

We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from ∼0% to 1.3%, are suggestive of a planet that is disintegrating via the emission of dusty effluents. We characterize the host star as an M-dwarf with Teff ≃ 3800 K. We have obtained ground-based transit measurements with several 1-m class telescopes and with the GTC. These observations (1) improve the transit ephemeris; (2) confirm the variable nature of the transit depths; (3) indicate variations in the transit shapes; and (4) demonstrate clearly that at least on one occasion the transit depths were significantly wavelength dependent. The latter three effects tend to indicate extinction of starlight by dust rather than by any combination of solid bodies. The K2 observations yield a folded light curve with lower time resolution but with substantially better statistical precision compared with the ground-based observations. We detect a significant “bump” just after the transit egress, and a less significant bump just prior to transit ingress. We interpret these bumps in the context of a planet that is not only likely streaming a dust tail behind it, but also has a more prominent leading dust trail that precedes it. This effect is modeled in terms of dust grains that can escape to beyond the planet's Hill sphere and effectively undergo “Roche lobe overflow,” even though the planet's surface is likely underfilling its Roche lobe by a factor of 2. [less ▲]

Detailed reference viewed: 71 (10 ULiège)
Full Text
See detailHD 97658 and its super-Earth
Van Grootel, Valérie ULiege; Gillon, Michaël ULiege; Valencia, D. et al

in European Physical Journal Web of Conferences (2015, September 01)

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition ... [more ▼]

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present the confirmation, based on Spitzer observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M*=0.77+-0.05 Msun) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive (Mp=7.55 +0.83,-0.79 Mearth) and large (Rp = 2.247 +0.098,-0.095 Rearth at 4.5 microns) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. [less ▲]

Detailed reference viewed: 25 (5 ULiège)
Full Text
See detailThree WASP-South Transiting Exoplanets: WASP-74b, WASP-83b, and WASP-89b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Astronomical Journal (2015), 150

We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the ... [more ▼]

We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to southern telescopes. It is a 0.95M[SUB]Jup[/SUB] planet with a moderately bloated radius of 1.5 {R}[SUB]{Jup[/SUB]} in a 2 day orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 {M}[SUB]{Jup[/SUB]} with a radius of 1.0 {R}[SUB]{Jup[/SUB]}. It is in a 5 day orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M[SUB]Jup[/SUB] planet in a 3 day orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 days, while star spots are visible in the transits. There are indications that the planet’s orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots. [less ▲]

Detailed reference viewed: 62 (16 ULiège)
Full Text
See detailWASP-80b has a dayside within the T-dwarf range
Triaud, Amaury H. M. J.; Gillon, Michaël ULiege; Ehrenreich, David et al

in Monthly Notices of the Royal Astronomical Society (2015), 450

WASP-80b is a missing link in the study of exoatmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterization, thanks to its host star's properties. We observed ... [more ▼]

WASP-80b is a missing link in the study of exoatmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterization, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μm Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply that this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. WASP-80b's flux density is as low as GJ 436b at 3.6 μm; the planet's dayside is also fainter, but bluer than HD 189733Ab's nightside (in the [3.6] and [4.5]Spitzer bands). Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, such as brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimated. [less ▲]

Detailed reference viewed: 51 (1 ULiège)
Full Text
See detailHubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri B b
Demory, Brice-Olivier; Ehrenreich, David; Queloz, Didier et al

in Monthly Notices of the Royal Astronomical Society (2015), 450

Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a ... [more ▼]

Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri B b with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40 h. We achieve a precision of 115 ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri B b with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 h of continuous observations. [less ▲]

Detailed reference viewed: 21 (0 ULiège)
Full Text
See detailPluto's atmosphere from stellar occultations in 2012 and 2013
Dias-Oliveira, A.; Sicardy, B.; Lellouch, Emmanuel et al

in Astrophysical Journal (2015), 1506

We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves ... [more ▼]

We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves, twelve of them being used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no-haze) and pure N_2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that fits satisfactorily (i.e. within the noise level) all the twelve light-curves, providing atmospheric constraints between ~1,190 km (pressure ~ 11 \mubar) and ~ 1,450 km (pressure ~0.1 \mubar) from Pluto's center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with strong positive gradient between 1,190 km (at 36 K, 11 \mubar) and r = 1,215 km (6.0 \mubar), where a temperature maximum of 110 K is reached; above it is a mesosphere with negative thermal gradient of -0.2 K/km up to ~ 1,390 km (0.25 \mubar), where, the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6 [less ▲]

Detailed reference viewed: 47 (7 ULiège)
Full Text
See detailWISE J072003.20-084651.2: an Old and Active M9.5 + T5 Spectral Binary 6 pc from the Sun
Burgasser, Adam J.; Gillon, Michaël ULiege; Melis, Carl et al

in Astronomical Journal (2015), 149

We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. New astrometric measurements obtained with the TRAPPIST telescope improve the distance measurement to 6.0 ± ... [more ▼]

We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. New astrometric measurements obtained with the TRAPPIST telescope improve the distance measurement to 6.0 ± 1.0 pc and confirm the low tangential velocity (3.5 ± 0.6 km s[SUP]-1[/SUP]) reported by Scholz. Low-resolution optical spectroscopy indicates a spectral type of M9.5 and prominent Hα emission (< {{log }[SUB]10[/SUB]}{{L}[SUB]Hα [/SUB]}/{{L}[SUB]bol[/SUB]}> = -4.68 ± 0.06), but no evidence of subsolar metallicity or Li i absorption. Near-infrared spectroscopy reveals subtle peculiarities that can be explained by the presence of a T5 binary companion, and high-resolution laser guide star adaptive optics imaging reveals a faint (ΔH = 4.1) candidate source 0\buildrel{\prime\prime}\over{.} 14 (0.8 AU) from the primary. With high-resolution optical and near-infrared spectroscopy, we measure a stable radial velocity of +83.8 ± 0.3 km s[SUP]-1[/SUP], indicative of old disk kinematics and consistent with the angular separation of the possible companion. We measure a projected rotational velocity of v sin i = 8.0 ± 0.5 km s[SUP]-1[/SUP] and find evidence of low-level variabilty (˜1.5%) in a 13 day TRAPPIST light curve, but cannot robustly constrain the rotational period. We also observe episodic changes in brightness (1%-2%) and occasional flare bursts (4%-8%) with a 0.8% duty cycle, and order-of-magnitude variations in Hα line strength. Combined, these observations reveal WISE J0720-0846 to be an old, very low-mass binary whose components straddle the hydrogen burning minimum mass, and whose primary is a relatively rapid rotator and magnetically active. It is one of only two known binaries among late M dwarfs within 10 pc of the Sun, both of which harbor a mid T-type brown dwarf companion. We show that while this specific configuration is rare (≲1.6% probability), roughly 25% of binary companions to late-type M dwarfs in the local population are likely low-temperature T or Y brown dwarfs. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. [less ▲]

Detailed reference viewed: 42 (6 ULiège)
Full Text
See detailThe HARPS search for southern extra-solar planets. XXXVI. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543
Astudillo-Defru, N.; Bonfils, X.; Delfosse, X. et al

in Astronomy and Astrophysics (2015), 575

Context. Planetary companions of a fixed mass induce reflex motions with a larger amplitude around lower-mass stars, which adds to making M dwarfs excellent targets for extra-solar planet searches. The ... [more ▼]

Context. Planetary companions of a fixed mass induce reflex motions with a larger amplitude around lower-mass stars, which adds to making M dwarfs excellent targets for extra-solar planet searches. The most recent velocimeters with a stability of ~1 m s[SUP]-1[/SUP] can detect very low-mass planets out to the habitable zone of these stars. Low-mass small planets are abundant around M dwarfs, and most of the known potentially habitable planets orbit one of these cool stars. <BR /> Aims: Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6 m telescope at La Silla observatory makes a major contribution to this sample. <BR /> Methods: We present here dense radial velocity (RV) time series for three M dwarfs observed over ~five years: GJ 3293 (0.42 M[SUB]⊙[/SUB]), GJ 3341 (0.47 M[SUB]⊙[/SUB]), and GJ 3543 (0.45 M[SUB]⊙[/SUB]). We extracted these RVs through minimum χ[SUP]2[/SUP]-matching of each spectrum against a stack of all observed spectra for the same star that has a high signal-to-noise ratio. We then compared potential orbital signals against several stellar activity indicators to distinguish the Keplerian variations induced by planets from the spurious signals that result from rotational modulation of stellar surface inhomogeneities and from activity cycles. <BR /> Results: Two Neptune-mass planets - msin(i) = 1.4 ± 0.1 and 1.3 ± 0.1M[SUB]nept[/SUB] - orbit GJ 3293 with periods P = 30.60 ± 0.02 d and P = 123.98 ± 0.38 d, possibly together with a super-Earth - msin(i) ~ 7.9 ± 1.4 M[SUB]⊕[/SUB] - with period P = 48.14 ± 0.12d. A super-Earth - msin(i) ~ 6.1 M[SUB]⊕[/SUB] - orbits GJ 3341 with P = 14.207 ± 0.007d. The RV variations of GJ 3543, on the other hand, reflect its stellar activity rather than planetary signals. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 072.C-0488, 082.C-0718 and 183.C-0437 at Cerro La Silla (Chile).Tables A.1-A.3 (radial velocity data) are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201424253/olm">http://www.aanda.org</A> and at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A119">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A119</A> [less ▲]

Detailed reference viewed: 38 (0 ULiège)
Full Text
See detailThe small binary asteroid (939) Isberga
Carry, B.; Matter, A.; Scheirich, P. et al

in Icarus (2015), 248

In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here at characterizing the surface composition, mutual orbit, size, mass ... [more ▼]

In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here at characterizing the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14<SUB>-0.06</SUB><SUP>+0.09</SUP> (all uncertainties are reported as 3-σ range) we determine (average albedo of S-types is 0.197 ± 0.153, see Pravec et al. (Pravec et al. [2012]. Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 ± 0.0001 h, is close to circular (eccentricity lower than 0.1), and has pole coordinates within 7° of (225°, +86°) in Ecliptic J2000, implying a low obliquity of 1.5<SUB>-1.5</SUB><SUP>+6.0</SUP> deg . The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4<SUB>-1.2</SUB><SUP>+2.5</SUP> km and 3.6<SUB>-0.3</SUB><SUP>+0.7</SUP> km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be 2.91<SUB>-2.01</SUB><SUP>+1.72</SUP> gcm<SUP>-3</SUP> , lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry [2012]. Planet. Space Sci. 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g., LBT, ALMA). [less ▲]

Detailed reference viewed: 58 (3 ULiège)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astronomy and Astrophysics (2015), 575

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 M[SUB]Jup[/SUB]; 1.46 R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 M[SUB]Jup[/SUB]; 1.46 R[SUB]Jup[/SUB]) in a 4.9-day, near-aligned (λ = 12.7 ± 4.2°) orbit around CD-24 102 (V = 10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91 M[SUB]Jup[/SUB]; 1.21 R[SUB]Jup[/SUB]) in a 3.4-day, near-aligned (λ = 8 ± 18°) orbit around a V = 12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7[SUP]+ 2[/SUP][SUB]-1[/SUB] Gyr and 6000 ± 100 K for WASP-20; 5[SUP]+ 3[/SUP][SUB]-2[/SUB] Gyr and 6100 ± 150 K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. Based on observations made with: the WASP-South (South Africa) and SuperWASP-North (La Palma) photometric survey instruments; the C2 and EulerCam cameras and the CORALIE spectrograph, all mounted on the 1.2-m Euler-Swiss telescope (La Silla); the HARPS spectrograph on the ESO 3.6-m telescope (La Silla) under programs 072.C-0488, 082.C-0608, 084.C-0185, and 085.C-0393; and LCOGT's Faulkes Telescope North (Maui) and Faulkes Telescope South (Siding Spring).Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61</A> [less ▲]

Detailed reference viewed: 38 (0 ULiège)
Full Text
See detailThe non-convex shape of (234) Barbara, the first Barbarian
Tanga, Paolo; Carry, B.; Colas, F. et al

in Monthly Notices of the Royal Astronomical Society (2015)

Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar System. It exhibits ... [more ▼]

Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar System. It exhibits several peculiar features, most notably its polarimetric behavior. In recent years other objects sharing the same property (collectively known as ”Barbarians”) have been discovered. Interferometric observations in the mid-infrared with the ESO VLTI suggested that (234) Barbara might have a bi-lobated shape or even a large companion satellite. We use a large set of 57 optical lightcurves acquired between 1979 and 2014, together with the timings of two stellar occultations in 2009, to determine the rotation period, spin-vector coordinates, and 3-D shape of (234) Barbara, using two different shape reconstruction algorithms. By using the lightcurves combined to the results obtained from stellar occultations, we are able to show that the shape of (234) Barbara exhibits large concave areas. Possible links of the shape to the polarimetric properties and the object evolution are discussed. We also show that VLTI data can be modeled without the presence of a satellite [less ▲]

Detailed reference viewed: 59 (10 ULiège)