Wouters, C., Klein, B., Price, N., Boemer, F., Voz, M., & Votion, D. (19 October 2024). A Zebrafish Embryo Model to Screen Potential Therapeutic Compounds in Sapindaceae Poisoning. Molecules, 29, 1-17. doi:10.3390/molecules29204954 |
Massoz, L., Bergemann, D., Lavergne, A., Reynders, C., Désiront, C., Goossens, C., Flasse, L., Peers, B., Voz, M., & Manfroid, I. (2023). Negative cell cycle regulation by Calcineurin is necessary for proper beta cell regeneration in zebrafish. eLife. doi:10.7554/elife.88813.1 |
Reuter, A.-S., Stern, D., Bernard, A., Goossens, C., Lavergne, A., Flasse, L., Von Berg, V., Manfroid, I., Peers, B., & Voz, M. (14 March 2022). Identification of an evolutionarily conserved domain in Neurod1 favouring enteroendocrine versus goblet cell fate. PLoS Genetics, 18 (3), 1010109. doi:10.1371/journal.pgen.1010109 |
Carril Pardo, C. A., Massoz, L., Dupont, M., Bergemann, D., Bourdouxhe, J., Lavergne, A., Tarifeño Saldivia, E., Helker, C. S., Stainier, D. Y. T., Peers, B., Voz, M., & Manfroid, I. (2022). A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model. eLife, 11. doi:10.7554/eLife.67576 |
López-Pérez, A. R., Balwierz, P. J., Lenhard, B., Muller, F., Wardle, F. C., Manfroid, I., Voz, M., & Peers, B. (2021). Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. Scientific Reports, 11 (1), 22717. doi:10.1038/s41598-021-02039-y |
Mousavy Gharavy, S. N., Owen, B. M., Millership, S. J., Chabosseau, P., Pizza, G., Martinez-Sanchez, A., Tasoez, E., Georgiadou, E., Hu, M., Fine, N. H. F., Jacobson, D. A., Dickerson, M. T., Idevall-Hagren, O., Montoya, A., Kramer, H., Mehta, Z., Withers, D. J., Ninov, N., Gadue, P. J., ... Rutter, G. A. (2021). Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis. Diabetologia, 1-15. doi:10.1007/s00125-020-05350-x |
Lavergne, A.* , Tarifeño-Saldivia, E.* , Pirson, J., Reuter, A.-S., Flasse, L., Manfroid, I., Voz, M.* , & Peers, B.*. (2020). Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biology, 18 (1), 109. doi:10.1186/s12915-020-00840-1 * These authors have contributed equally to this work. |
Rapino, F., Delaunay, S., Rambow, F., Zhou, Z., Tharun, L., De Tullio, P., Sin, O., Shostak, K., Schmitz, S., Piepers, J., Guesquière, B., Karim, L., Charloteaux, B., Jamart, D., Florin, A., Lambert, C., RORIVE, A., JERUSALEM, G., Leucci, E., ... Close, P. (28 June 2018). Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature, 558, 605-609. doi:10.1038/s41586-018-0243-7 |
Bergemann, D., Massoz, L., Bourdouxhe, J., Carril Pardo, C., Voz, M., Peers, B., & Manfroid, I. (2018). Nifurpirinol : a more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations. Wound Repair and Regeneration. doi:10.1111/wrr.12633 |
Tarifeño Saldivia, E., Lavergne, A., Bernard, A., Padamata, K., Bergemann, D., Voz, M., Manfroid, I., & Peers, B. (21 March 2017). Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biology, 15. doi:10.1186/s12915-017-0362-x |
Janssen, L.* , Dupont, L.* , Bekhouche, M., Noël, A., Leduc, C., Voz, M., Peers, B., Cataldo, D., Apte, S. S., Dubail, J.* , & Colige, A.*. (2016). ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis, 19, 53-65. doi:10.1007/s10456-015-9488-z * These authors have contributed equally to this work. |
Ghaye, A., Bergemann, D., Tarifeño Saldivia, E., Flasse, L., Von Berg, V., Peers, B., Voz, M.* , & Manfroid, I.*. (02 September 2015). Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biology, 13, 70. doi:10.1186/s12915-015-0179-4 * These authors have contributed equally to this work. |
Flasse, L., Pirson, J., Stern, D., Von Berg, V., Manfroid, I., Peers, B., & Voz, M. (July 2013). Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biology, 11, 78. doi:10.1186/1741-7007-11-78 |
Flasse, L., Stern, D., Pirson, J., Manfroid, I., Peers, B., & Voz, M. (2013). The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Developmental Biology, 376 (2), 187-97. doi:10.1016/j.ydbio.2013.01.011 |
Naye, F., Voz, M., Detry, N., Hammerschmidt, M., Peers, B., & Manfroid, I. (2012). Essential roles of zebrafish bmp2a, fgf10 and fgf24 in the specification of the ventral pancreas. Molecular Biology of the Cell. doi:10.1091/mbc.E11-08-0664 |
Djiotsa, J., Verbruggen, V., Giacomotto, J., Ishibashi, M., Manning, E., Rinkwitz, S., Manfroid, I., Voz, M., & Peers, B. (2012). Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC Developmental Biology, 12, 37. doi:10.1186/1471-213X-12-37 |
Manfroid, I., Ghaye, A., Naye, F., Detry, N., Palm, S., Pan, L., Ma, T., Huang, W., Rovira, M., Martial, J., Parsons, M., Moens, C., Voz, M., & Peers, B. (2012). Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Developmental Biology. doi:10.1016/j.ydbio.2012.04.002 |
Voz, M., Coppieters, W., Manfroid, I., Baudhuin, A., Von Berg, V., Charlier, C., Meyer, D., Driever, W., Martial, J., & Peers, B. (2012). Fast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing. PLoS ONE, 7 (4), 34671. doi:10.1371/journal.pone.0034671 |
Verbruggen, V., Ek, O., Georlette, D., Delporte, F., Von Berg, V., Detry, N., Biemar, F., Coutinho, P., Martial, J., Voz, M., Manfroid, I., & Peers, B. (30 April 2010). The Pax6b homeodomain is dispensable for pancreatic endocrine cell differentiation in zebrafish. Journal of Biological Chemistry, 285 (18), 13863-73. doi:10.1074/jbc.M110.108019 |
Binot, A.-C., Manfroid, I., Flasse, L., Winandy, M., Motte, P., Martial, J., Peers, B., & Voz, M. (01 February 2010). Nkx6.1 and nkx6.2 regulate alpha- and beta-cell formation in zebrafish by acting on pancreatic endocrine progenitor cells. Developmental Biology, 340 (2), 397-407. doi:10.1016/j.ydbio.2010.01.025 |
Soyer, J., Flasse, L., Raffelsberger, W., Beucher, A., Orvain, C., Peers, B., Ravassard, P., Vermot, J., Voz, M., Mellitzer, G., & Gradwohl, G. (January 2010). Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development, 137 (2), 203-12. doi:10.1242/dev.041673 |
Delporte, F. M., Pasque, V., Devos, N., Manfroid, I., Voz, M., Motte, P., Biemar, F., Martial, J., & Peers, B. (2008). Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC Developmental Biology, 8, 53. doi:10.1186/1471-213X-8-53 |
Pendeville-Samain, H., Winandy, M., Manfroid, I., Nivelles, O., Motte, P., Pasque, V., Peers, B., Struman, I., Martial, J., & Voz, M. (2008). Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Developmental Biology, 317 (2), 405-16. doi:10.1016/j.ydbio.2008.01.028 |
Manfroid, I., Delporte, F., Baudhuin, A., Motte, P., Neumann, C. J., Voz, M., Martial, J., & Peers, B. (2007). Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development, 134 (22), 4011-21. doi:10.1242/dev.007823 |
Nichane, M., Van Campenhout, C., Pendeville, H., Voz, M., & Bellefroid, E. J. (2006). The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. Gene Expression Patterns, 6 (7), 667-72. doi:10.1016/j.modgep.2006.01.005 |
Peeters, H., Voz, M., Verschueren, K., De Cat, B., Pendeville, H., Thienpont, B., Schellens, A., Belmont, J. W., David, G., Van De Ven, W. J. M., Fryns, J.-P., Gewillig, M., Huylebroeck, D., Peers, B., & Devriendt, K. (2006). Sesn1 is a novel gene for left-right asymmetry and mediating nodal signaling. Human Molecular Genetics, 15 (22), 3369-77. doi:10.1093/hmg/ddl413 |
Pendeville, H., Peers, B., Kas, K., & Voz, M. (2006). Cloning and embryonic expression of zebrafish PLAG genes. Gene Expression Patterns, 6 (3), 267-76. doi:10.1016/j.modgep.2005.08.001 |
Van Campenhout, C., Nichane, M., Antoniou, A., Pendeville, H., Bronchain, O. J., Marine, J.-C., Mazabraud, A., Voz, M., & Bellefroid, E. J. (2006). Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Developmental Biology, 294 (1), 203-19. doi:10.1016/j.ydbio.2006.02.040 |
Declercq, J., Van Dyck, F., Braem, C. V., Van Valckenborgh, I. C., Voz, M., Wassef, M., Schoonjans, L., Van Damme, B., Fiette, L., & Van de Ven, W. J. M. (01 June 2005). Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression. Cancer Research, 65 (11), 4544-53. doi:10.1158/0008-5472.CAN-04-4041 |
Voz, M., Mathys, J., Hensen, K., Pendeville, H., Van Valckenborgh, I., Van Huffel, C., Chavez, M., Van Damme, B., De Moor, B., Moreau, Y., & Van de Ven, W. J. M. (2004). Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene, 23 (1), 179-91. doi:10.1038/sj.onc.1207013 |
Hensen, K., Van Valckenborgh, I. C. C., Kas, K., Van de Ven, W. J. M., & Voz, M. (01 March 2002). The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities. Cancer Research, 62 (5), 1510-7. |
Braem, C. V., Kas, K., Meyen, E., Debiec-Rychter, M., Van De Ven, W. J. M., & Voz, M. (2002). Identification of a karyopherin alpha 2 recognition site in PLAG1, which functions as a nuclear localization signal. Journal of Biological Chemistry, 277 (22), 19673-8. doi:10.1074/jbc.M112112200 |
Debiec-Rychter, M., Van Valckenborgh, I., Van den Broeck, C., Hagemeijer, A., Van de Ven, W. J., Kas, K., Van Damme, B., & Voz, M. (2001). Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: cytogenetic evidence of common origin of phenotypically diverse cells. Laboratory Investigation, 81 (9), 1289-97. doi:10.1038/labinvest.3780342 |
Voz, M., Agten, N. S., Van de Ven, W. J., & Kas, K. (2000). PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Research, 60 (1), 106-13. |
Voz, M., Van de Ven, W. J., & Kas, K. (2000). First insights into the molecular basis of pleomorphic adenomas of the salivary glands. Advances in Dental Research, 14, 81-3. doi:10.1177/08959374000140011301 |
Astrom, A. K., Voz, M., Kas, K., Roijer, E., Wedell, B., Mandahl, N., Van de Ven, W., Mark, J., & Stenman, G. (1999). Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. Cancer Research, 59 (4), 918-23. |
Kas, K., Voz, M., Hensen, K., Meyen, E., & Van de Ven, W. J. (1998). Transcriptional activation capacity of the novel PLAG family of zinc finger proteins. Journal of Biological Chemistry, 273 (36), 23026-32. doi:10.1074/jbc.273.36.23026 |
Voz, M., Astrom, A. K., Kas, K., Mark, J., Stenman, G., & Van de Ven, W. J. (1998). The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene, 16 (11), 1409-16. doi:10.1038/sj.onc.1201660 |
Kas, K., Röijer, E., Voz, M., Meyen, E., Stenman, G., & Van de Ven, W. J. M. (01 August 1997). A 2-Mb YAC contig and physical map covering the chromosome 8q12 breakpoint cluster region in pleomorphic adenomas of the salivary glands. Genomics, 43 (3), 349-58. doi:10.1006/geno.1997.4819 |
Kas, K., Voz, M., Roijer, E., Astrom, A. K., Meyen, E., Stenman, G., & Van de Ven, W. J. (1997). Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nature Genetics, 15 (2), 170-4. doi:10.1038/ng0297-170 |
Sheridan, P. L., Schorpp, M., Voz, M., & Jones, K. A. (1995). Cloning of an SNF2/SWI2-related protein that binds specifically to the SPH motifs of the SV40 enhancer and to the HIV-1 promoter. Journal of Biological Chemistry, 270 (9), 4575-87. doi:10.1074/jbc.270.9.4575 |
Sheridan, P. L., Sheline, C. T., Cannon, K., Voz, M., Pazin, M. J., Kadonaga, J. T., & Jones, K. A. (1995). Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes and Development, 9 (17), 2090-104. doi:10.1101/gad.9.17.2090 |
Peers, B., Nalda, A. M., Monget, P., Voz, M., Belayew, A., & Martial, J. (1992). Binding of a 100-kDa ubiquitous factor to the human prolactin promoter is required for its basal and hormone-regulated activity. European Journal of Biochemistry, 210 (1), 53-8. doi:10.1111/j.1432-1033.1992.tb17389.x |
Voz, M., Peers, B., Wiedig, M. J., Jacquemin, P., Belayew, A., & Martial, J. (1992). Transcriptional regulation by triiodothyronine requires synergistic action of the thyroid receptor with another trans-acting factor. Molecular and Cellular Biology, 12 (9), 3991-7. doi:10.1128/MCB.12.9.3991 |
Peers, B., Monget, P., Nalda, M. A., Voz, M., Berwaer, M., Belayew, A., & Martial, J. (1991). Transcriptional induction of the human prolactin gene by cAMP requires two cis-acting elements and at least the pituitary-specific factor Pit-1. Journal of Biological Chemistry, 266 (27), 18127-34. |
Voz, M., Peers, B., Belayew, A., & Martial, J. (1991). Characterization of an unusual thyroid response unit in the promoter of the human placental lactogen gene. Journal of Biological Chemistry, 266 (20), 13397-404. |
Morin, A., Louette, J., Voz, M., Tixier-Vidal, A., Belayew, A., & Martial, J. (1990). Triiodothyronine inhibits transcription from the human growth hormone promoter. Molecular and Cellular Endocrinology, 71 (3), 261-7. doi:10.1016/0303-7207(90)90031-3 |
Peers, B., Voz, M., Monget, P., Mathy, M., Berwaer, M., Belayew, A., & Martial, J. (1990). Regulatory elements controlling pituitary-specific expression of the human prolactin gene. Molecular and Cellular Biology, 10 (9), 4690-700. doi:10.1128/MCB.10.9.4690 |
Rentier-Delrue, F., Voz, M., & Martial, J. (1990). The possibilities of recombinant DNA technology for the elucidation of the structure of steroid receptors and their mode of action. Progress in Clinical and Biological Research, 342, 163-7. |
ROUSSEAU, G. G., ELIARD, P. H., BARLOW, J. W., LEMAIGRE, F. P., LAFONTAINE, D. A., DE NAYER, P., ECONOMIDIS, I. V., FORMSTECHER, P., Mathy, M., Voz, M., BELAYEW, A., & Martial, J. (1987). Approach to the molecular mechanisms of the modulation of growth hormone gene expression by glucocorticoid and thyroid hormones. Journal of Steroid Biochemistry, 27 (1-3), 149-58. doi:10.1016/0022-4731(87)90305-0 |
Barlow, J. W., Voz, M., Eliard, P. H., Mathy, M., De Nayer, P., Economidis, I. V., Belayew, A., Martial, J., & Rousseau, G. G. (1986). Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes. Proceedings of the National Academy of Sciences of the United States of America, 83 (23), 9021-5. doi:10.1073/pnas.83.23.9021 |