Publications of ???
Bookmark and Share    
Full Text
See detailComparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica
Amory, Charles ULiege; Trouvillez, A.; Gallée, H. et al

in Cryosphere (2015), 9

The regional climate model MAR including a coupled snow pack/aeolian snow transport parameterisation is compared with aeolian snow mass fluxes at a fine spatial resolution (5 km horizontally and 2 m ... [more ▼]

The regional climate model MAR including a coupled snow pack/aeolian snow transport parameterisation is compared with aeolian snow mass fluxes at a fine spatial resolution (5 km horizontally and 2 m vertically) and at a fine temporal resolution (30 min) over 1 month in Antarctica. Numerous feedbacks are taken into account in the MAR including the drag partitioning caused by the roughness elements. Wind speed is correctly simulated with a positive value of the Nash test (0.60 and 0.37) but the wind speeds above 10 m s−1 are underestimated. The aeolian snow transport events are correctly reproduced with a good temporal resolution except for the aeolian snow transport events with a particles' maximum height below 1 m. The simulated threshold friction velocity, calculated without snowfall, is overestimated. The simulated aeolian snow mass fluxes between 0 to 2 m have the same variations but are underestimated compared to the second-generation FlowCapt values and so is the simulated relative humidity at 2 m. This underestimation is not entirely due to the underestimation of the simulated wind speed. The MAR underestimates the aeolian snow quantity that pass through the first two meters by a factor ten compared to the second-generation FlowCapt value (13 990 kg m−1 and 151 509 kg m−1 respectively). It will conduct the MAR, with this parametrisation, to underestimate the effect of the aeolian snow transport on the Antarctic surface mass balance. [less ▲]

Detailed reference viewed: 52 (12 ULiège)
Full Text
See detailContribution du bilan de masse de surface antarctique à l’évolution du niveau des mers avec le modèle atmosphérique régional MAR
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Gallée, Hubert

in Actes du 28e colloque de l’Association Internationale de Climatologie (2015, July 02)

Detailed reference viewed: 26 (1 ULiège)
Full Text
See detailEvaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Datta, Rajashree

in Cryosphere (2015), 9

The surface mass balance (SMB) of the Antarctic Ice Sheet cannot be reliably deduced from global climate models (GCMs), both because their spatial resolution is insufficient and because their physics are ... [more ▼]

The surface mass balance (SMB) of the Antarctic Ice Sheet cannot be reliably deduced from global climate models (GCMs), both because their spatial resolution is insufficient and because their physics are not adapted for cold and snow-covered regions. By contrast, regional climate models (RCMs) adapted for polar regions can physically and dynamically downscale SMB components over the ice sheet using large-scale forcing at their boundaries. Polar-oriented RCMs require appropriate GCM fields for forcing because the response of the cryosphere to a warming climate is dependent on its initial state and is not linear with respect to temperature increase. In this context, we evaluate the current climate in 41 climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) data set over Antarctica by focusing on forcing fields which may have the greatest impact on SMB components simulated by RCMs. Our inter-comparison includes six reanalyses, among which ERA-Interim reanalysis is chosen as a reference over 1979–2014. Model efficiency is assessed taking into account the multi-decadal variability of the fields over the 1850–1980 period. We show that fewer than 10 CMIP5 models show reasonable biases compared to ERA-Interim, among which ACCESS1-3 is the most pertinent choice for forcing RCMs over Antarctica, followed by ACCESS1-0, CESM1-BGC, CESM1-CAM5, NorESM1-M, CCSM4 and EC-EARTH. Finally, climate change over the Southern Ocean in CMIP5 is less sensitive to the global warming signal than it is to the present-day simulated sea-ice extent and to the feedback between sea-ice decrease and air temperature increase around Antarctica. [less ▲]

Detailed reference viewed: 144 (14 ULiège)
Full Text
See detailA novel experimental study of aeolian snow transport in Adelie Land (Antarctica)
Trouvilliez, Alexandre; Naaim-Bouvet, Florence; Genthon, Christophe et al

in Cold Regions Science and Technology (2014), 108

None of the previous aeolian snow transport campaigns in Antarctica meet the requirements in terms of tempo- ral resolution, long-term series and qualified instruments for evaluations of meteorological ... [more ▼]

None of the previous aeolian snow transport campaigns in Antarctica meet the requirements in terms of tempo- ral resolution, long-term series and qualified instruments for evaluations of meteorological and climate models including parameterization for aeolian snow transport. Consequently, determining the quantity of snow transported remains a challenge. A field campaign was therefore launched in January 2009, in Adélie Land, Antarctica, to acquire new model-evaluation-oriented observations within the European ICE2SEA project, with the logistical support of the French polar Institute (IPEV). The available aeolian snow transport sensors are reviewed and the sensor that best suited our specific needs was chosen: FlowCaptTM acoustic sensors. Three au- tomatic weather stations were deployed with FlowCaptsTM close to the coast. The stations' locations are distinct, ranging from 1 to 100 km inland, one of them with a 7-m mast with six levels of anemometers and thermohygrometers. The fluid and impact threshold friction velocities recorded were 0.48 ± 0.09 m s− 1 and 0.4 ± 0.09 m s−1, respectively, with a high standard deviation of 0.12 ± 0.03 m s−1 and 0.13 ± 0.03 m s−1, respectively. The aeolian snow transport frequency in Adélie Land was very high with seasonal variation of trans- port occurring with minima during the austral summer. Seven percent of the aeolian snow transport events were drifting snow (maximum particle's height, b1 m above the surface). The snow quantity transported was above 1 kiloton per year in the first meter above the surface. [less ▲]

Detailed reference viewed: 55 (10 ULiège)
See detailSensitivity Study of the antarctic surface mass balance to snow erosion by the wind.
Gallée, Hubert; Agosta, Cécile ULiege; Amory, Charles ULiege et al

Conference (2014, August 26)

Detailed reference viewed: 29 (8 ULiège)
Full Text
See detailEstimating Antarctic ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Gallée, Hubert

Conference (2014, May 26)

The Antarctic ice-sheet surface mass balance (SMB) is a significant contribution to sea level changes which may mitigate the rise in sea level in a warmer climate, but this term is still poorly known. The ... [more ▼]

The Antarctic ice-sheet surface mass balance (SMB) is a significant contribution to sea level changes which may mitigate the rise in sea level in a warmer climate, but this term is still poorly known. The Antarctic SMB cannot be directly deduced from global climate models (GCMs) because of their too low resolution (~100 km) and their unadapted physic over cold and snow-covered areas. That is why the use of a regional climate models (RCM) specifically developed for polar regions is particularly relevant. We present here new estimations of the Antarctic SMB changes for the 20th and the 21st century at 40 km of resolution with the MAR (Modèle Atmosphérique Régional) RCM. Recent studies showed that large scale forcing from GCMs was the main source of uncertainty for RCM-deduced SMB, thus we first present a carefully analysis of the CMIP5 GCMs (used in the AR5 IPCC report) compared to the ERA-Interim reanalysis over the Antarctic region, from which we could select the less biased large scale forcing for MAR. We thus show the Antarctic SMB evolution as modeled with MAR forced by ACCESS1-3 for RCP 4.5 and 8.5 greenhouse gaz scenarios. We evaluate our outputs by comparing MAR forced by ACCESS1-3 and ERA-Interim for the 1980-2000 period to more than 2700 quality-controlled observations and to surface meteorological data from the READER database. We then give SMB changes estimations for the 21st century together with an analysis of uncertainties coming from the MAR model, the GCM forcing and the greenhouse gaz scenarios. [less ▲]

Detailed reference viewed: 48 (4 ULiège)
Full Text
See detailOceanic forcing of Antarctic climate change: A study using a stretched-grid atmospheric general circulation model
Krinner, Gerhard; Largeron, Chloé; Ménégoz, Martin et al

in Journal of Climate (2014), 27

A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea-surface conditions ... [more ▼]

A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea-surface conditions, while a set of five simulations for the end of the 21st century (2070-2099) under the SRES-A1B scenario uses sea- surface condition anomalies from selected CMIP3 coupled ocean-atmosphere climate models. Analysis of the results shows that the prescribed sea-surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea- surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output. [less ▲]

Detailed reference viewed: 97 (3 ULiège)
Full Text
See detailHigh-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries
Agosta, Cécile ULiege; Favier, Vincent; Krinner, Gerhard et al

in Climate Dynamics (2013), 41(11-12), 3247-3260

About 75% of the Antarctic surface mass gain occurs over areas below 2000 m asl, which cover 40% of the grounded ice-sheet. As the topography is complex in many of these regions, SMB modelling is highly ... [more ▼]

About 75% of the Antarctic surface mass gain occurs over areas below 2000 m asl, which cover 40% of the grounded ice-sheet. As the topography is complex in many of these regions, SMB modelling is highly dependent on resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a low time consuming, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess SMB variation in the 21st and the 22nd centuries under two different scenarios. The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the 20th century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL compare the observed values equally well. Nevertheless, field data below 2000 m asl are too scarce to efficiency show the interest of SMHiL and measuring the SMB in these undocumented areas should be then a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15km) may give a future increase in SMB in Antarctica about 30% higher than by using its standard resolution (60 km) due to higher increase in precipitation in the coastal areas at 15 km. However, a part (~ 15%) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and then likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the conflict between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in the coastal areas. [less ▲]

Detailed reference viewed: 109 (6 ULiège)
See detailContribution future du bilan de masse de surface Antarctique au niveau des mers par la modélisation régionale
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Gallée, Hubert

Scientific conference (2013, October 15)

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu’on sache qu’il contribue de façon significative à l’évolution actuelle du niveau des mers et que sa contribution soit ... [more ▼]

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu’on sache qu’il contribue de façon significative à l’évolution actuelle du niveau des mers et que sa contribution soit supposée s’intensifier au cours des prochains siècles. Outre son effet direct sur le niveau des mers, le BMS est également un champs de forçage primordial pour les modèles de calotte. Enfin, alors qu’il existe des mesures directes de l’écoulement de la glace vers l’océan et des variations de masse totales (surface+écoulement) de la calotte, il n’existe pas de mesure directe du bilan de masse de surface à l’échelle du continent. La climatologie actuelle du BMS Antarctique est donc estimée principalement à partir de résultats de modélisation. Par ailleurs, le BMS est le résultat de processus complexes. Afin de le modéliser correctement, il est nécessaire de bien représenter la circulation atmosphérique et les processus physiques spécifiques aux régions polaires. Or les modèles de circulation générale présentent une résolution trop grossière et une physique peu adaptée pour modéliser correctement ces processus. Nous présentons ici des résultats de simulations réalisées le modèle atmosphérique régional MAR, qui fait référence pour la modélisation de l’atmosphère et des processus de surface en région polaire, à une résolution de 50 km pour la fin du 20ème et du 21ème siècle. Nous connaissons la qualité du modèle MAR, cependant, comme tout modèle atmosphérique régional, ses performances sont fortement liées à la qualité des forçages aux limites provenant des Modèles de Circulation Générale (MCG). Nous avons donc sélectionné le MCG le plus apte à simuler le climat présent parmi la nouvelle génération des MCGs provenant de la base de données CMIP5 (http://cmip- pcmdi.llnl.gov/cmip5/), qui seront utilisés dans le prochain rapport du GIEC. Cela est une étape cruciale car les MCGs ne représentant pas correctement le climat présent ne pourront pas donner de résultats probants pour les simulations futures. Nous nous penchons enfin sur l’épineux problème de l’évaluation du BMS modélisé à partir de données de terrain. En effet, un effort important a été réalisé pour répertorier les données de BMS de qualité en Antarctique, cependant nous montrons que ces données ne permettent pas d’évaluer les performances des modèles de façon suffisamment contraignante. L’utilisation d’autres types de données, satellites ou aéroportées par exemple, semble nécessaire, ce qui constitue un volet important de mes recherches en cours. [less ▲]

Detailed reference viewed: 19 (2 ULiège)
See detailEstimating Antarctic ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Gallée, Hubert

Poster (2013, April)

We report future projections of Surface Mass Balance (SMB) over the Antarctic ice sheet obtained with the regional climate model MAR, for different warming scenarios. MAR forcing is carefully selected ... [more ▼]

We report future projections of Surface Mass Balance (SMB) over the Antarctic ice sheet obtained with the regional climate model MAR, for different warming scenarios. MAR forcing is carefully selected among the CMIP5 GCMs panel according to its ability to simulate the current climate over Antarctica. MAR includes blowing snow modeling, an important process in Antarctica. [less ▲]

Detailed reference viewed: 51 (3 ULiège)
See detailHigh-resolution modelling of the Antarctic surface mass balance, application for the 20th, 21st and 22nd centuries
Agosta, Cécile ULiege; Favier, Vincent; Krinner, Gerhard et al

Poster (2013, April)

Although areas below 2000 m above sea level (a.s.l.) cover 40% of the Antarctic grounded ice-sheet, they represent about 75% of the surface mass balance (SMB) of the continent. Because the topography is ... [more ▼]

Although areas below 2000 m above sea level (a.s.l.) cover 40% of the Antarctic grounded ice-sheet, they represent about 75% of the surface mass balance (SMB) of the continent. Because the topography is complex in many of these regions, SMB modelling is highly dependent on resolution, and studying the impact of Antarctica on the fu- ture rise in sea level requires high resolution physical approaches. We have developed a new, low time consuming, physical downscaling model for high-resolution (15 km) long-term SMB projections. Here, we present results of our SMHiL (surface mass balance high-resolution downscaling) model, which was forced with the LMDZ4 atmo- spheric general circulation model to assess SMB variation in the 21st and the 22nd centuries under two different scenarios. The higher resolution of SMHiL reproduces the geographical patterns of SMB better and induces a significantly higher averaged SMB over the grounded ice-sheet for the end of the 20th century. Our comparison of more than 2700 quality-controlled field data showed that LMDZ4 and SMHiL fit the observed values equally well. Never- theless, field data below 2000 m a.s.l. are too scarce to settle SMHiL efficiency. Measuring the SMB in these undocumented areas is a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution may give a future increase in SMB in Antarctica between 15% to 30% higher than its standard resolution. Future changes in the Antarctic SMB at low elevations will result from the conflict between higher snow accumulation and runoff. For this reason, developing a downscaling model was crucial to represent processes in sufficient detail and correctly model the SMB in coastal areas. [less ▲]

Detailed reference viewed: 53 (5 ULiège)
Full Text
See detailImpact of uncertainty in climate forcing on projections of the West Antarctic ice sheet over the 21st and 22nd centuries
Payne, A.J.; Cornford, S.L.; Martin, D.F. et al

E-print/Working paper (2013)

Detailed reference viewed: 97 (2 ULiège)
Full Text
See detailModélisation du bilan de masse de surface Antarctique : quelle stratégie et quelle validation ?
Agosta, Cécile ULiege; Favier, Vincent; Fettweis, Xavier ULiege et al

Conference (2013, January)

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu'on sache qu'il contribue de façon significative à l'évolution actuelle du niveau des mers et que sa contribution soit supposée ... [more ▼]

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu'on sache qu'il contribue de façon significative à l'évolution actuelle du niveau des mers et que sa contribution soit supposée s'intensifier au cours des prochains siècles. Outre son effet direct sur le niveau des mers, le BMS est également un champs de forçage primordial pour les modèles de calotte. Enfin, alors qu'il existe des mesures directes de l'écoulement de la glace vers l'océan et des variations de masse totales (surface+écoulement) de la calotte, il n'existe pas de mesure directe du bilan de masse de surface à l'échelle du continent. La climatologie actuelle du BMS Antarctique est donc estimée principalement à partir de résultats de modélisation. Il est donc crucial de modéliser correctement le bilan de masse de surface Antarctique. Or cette modélisation n'est pas aisée, car il existe peu de modèles de climat, globaux ou régionaux, dont la physique soit appropriée pour modéliser l'atmosphère sur des surfaces englacées. De plus, la résolution a une influence importante sur la représentation du BMS, ce qui oblige à faire des compromis entre résolution et complexité des modèles pour conserver des coûts de calcul raisonnables. Nous présentons la méthodologie que nous avons adoptée pour modéliser le BMS Antarctique sur plusieurs siècles et à haute résolution. Elle s'appuie sur une cascade de modèles adaptés aux conditions polaires à différentes échelles. Nous nous penchons également sur l'épineux problème de l'évaluation du BMS modélisé à partir de données de terrain. En effet, un effort important a été réalisé pour répertorier les données de BMS de qualité en Antarctique, mais ces données restent éparses et échantillonnent mal le continent. L'utilisation d'autres types de données, satellites ou aéroportées par exemple, semble nécessaire et nous ferons un état des lieux des limitations qui restent à dépasser pour y parvenir. [less ▲]

Detailed reference viewed: 76 (5 ULiège)
Full Text
See detailTransport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR
Gallée, Hubert; Trouvillez, Alexandre; Agosta, Cécile ULiege et al

in Boundary-Layer Meteorology (2013), 146(1), 133--147

For the first time a simulation of blowing snow events was validated in detail using one-month long observations (January 2010) made in Adélie Land, Antarctica. A regional climate model featuring a ... [more ▼]

For the first time a simulation of blowing snow events was validated in detail using one-month long observations (January 2010) made in Adélie Land, Antarctica. A regional climate model featuring a coupled atmosphere/blowing snow/snowpack model is forced laterally by meteorological re-analyses. The vertical grid spacing was 2 m from 2 to 20 m above the surface and the horizontal grid spacing was 5 km. The simulation was validated by comparing the occurrence of blowing snow events and other meteorological parameters at two automatic weather stations. The Nash test allowed us to compute effi- ciencies of the simulation. The regional climate model simulated the observed wind speed with a positive efficiency (0.69). Wind speeds higher than 12 m s−1 were underestimated. Positive efficiency of the simulated wind speed was a prerequisite for validating the blowing snow model. Temperatures were simulated with a slightly negative efficiency (−0.16) due to overestimation of the amplitude of the diurnal cycle during one week, probably because the cloud cover was underestimated at that location during the period concerned. Snowfall events were correctly simulated by our model, as confirmed by field reports. Because observations suggested that our instrument (an acoustic sounder) tends to overestimate the blowing snow flux, data were not sufficiently accurate to allow the complete validation of snow drift val- ues. However, the simulation of blowing snow occurrence was in good agreement with the observations made during the first 20 days of January 2010, despite the fact that the blowing snow flux may be underestimated by the regional climate model during pure blowing snow events. We found that blowing snow occurs in Adélie Land only when the 30-min wind speed value at 2 m a.g.l. is >10 m s−1. The validation for the last 10 days of January 2010 was less satisfactory because of complications introduced by surface melting and refreezing. [less ▲]

Detailed reference viewed: 37 (9 ULiège)
Full Text
See detailAn updated and quality controlled surface mass balance dataset for Antarctica
Favier, Vincent; Agosta, Cécile ULiege; Parouty, Soazig et al

in Cryosphere (2013), 7

We present an updated and quality controlled surface mass balance (SMB) database for the Antarctic ice sheet. We retrieved a total of 5284 SMB data documented with important meta-data, to which a filter ... [more ▼]

We present an updated and quality controlled surface mass balance (SMB) database for the Antarctic ice sheet. We retrieved a total of 5284 SMB data documented with important meta-data, to which a filter was applied to discard data with limited spatial and temporal representativeness, too small measurement accuracy, or lack of quality control. A total of 3438 reliable data was obtained, which is about four times more than by applying the same data filtering process to previously available databases. New important data with high spatial resolution are now available over long traverses, and at low elevation in some areas. However, the quality control led to a considerable reduction in the spatial density of data in several regions, particularly over West Antarctica. Over interior plateaus, where the SMB is low, the spatial density of mea- surements remained high. This quality controlled dataset was compared to results from ERA-Interim reanalysis to assess model representativeness over Antarctica, and also to identify large areas where data gaps impede model validation. Except for very few areas (e.g. Adelie Land), the elevation range between 200 m and 1000 m a.s.l. is not correctly sampled in the field, and measurements do not allow a thorough validation of models in regions with complex topography, where the highest scattering of SMB values is reported. Clearly, increasing the spatial density of field measurements at low elevations, in the Antarctic Peninsula and in West Antarctica remains a scientific priority. [less ▲]

Detailed reference viewed: 61 (5 ULiège)
Full Text
See detailFuture surface mass balance contribution of the Antarctic ice-sheet to sea level rise
Agosta, Cécile ULiege; Fettweis, Xavier ULiege; Krinner, Gerhard et al

Scientific conference (2012, December 04)

Most of the IPCC-AR4 global circulation models predict an increase of the Antarctic Surface Mass Balance (SMB) during the 21st century that would mitigate global sea level rise. High-resolution modeling ... [more ▼]

Most of the IPCC-AR4 global circulation models predict an increase of the Antarctic Surface Mass Balance (SMB) during the 21st century that would mitigate global sea level rise. High-resolution modeling is necessary to adequately capture the Antarctic SMB, that is why we present here a downscaling method leading to 15-km SMB resolution for century time-scales over Antarctica. Our first results show that a higher resolution induce at the same time more run-off but a significantly higher mitigation of sea level rise for the next centuries. [less ▲]

Detailed reference viewed: 49 (3 ULiège)
Full Text
See detailTransport de la neige par le vent en Terre Adélie (Antarctique) : observation et modélisation avec le Modèle Atmosphérique Régional (MAR).
Gallée, H.; Trouvilliez, A.; Agosta, Cécile ULiege et al

in Actes du 25e colloque de l’Association Internationale de Climatologie (2012, September 05)

Detailed reference viewed: 19 (2 ULiège)