Publications of Elodie Naveau
Bookmark and Share    
Full Text
See detailSupercritical CO2 as an efficient medium for layered silicate organomodification: preparation of thermally stable organoclays and dispersion in polyamide 6
Naveau, Elodie ULiege; Calberg, Cédric ULiege; Detrembleur, Christophe ULiege et al

in Polymer (2009), 50(6), 1438-1446

In this study, the preparation of organoclays via a new process using supercritical carbon dioxide is described. This method turns out to be very efficient with various surfactants, in particular nonwater ... [more ▼]

In this study, the preparation of organoclays via a new process using supercritical carbon dioxide is described. This method turns out to be very efficient with various surfactants, in particular nonwater-soluble alkylphosphonium salts. The influence of the surfactant as well as of the clay nature on the thermal stability of the organoclay is evaluated by thermogravimetric analysis. Phosphonium-based montmorillonites are up to 90 °C more stable than ammonium-based montmorillonites. Moreover, the use of hectorite adds another 40 °C of thermal stability to the phosphonium-modified clays. These organomodified clays have been melt-blended with polyamide 6 and morphology as well as fire properties of the nanocomposites are discussed, in terms of influence of the stability of organoclays. For the first time, comparison of nanocomposites based on clay organomodified by ammonium and phosphonium salts of the very same structure is reported. [less ▲]

Detailed reference viewed: 59 (10 ULiège)
Full Text
See detailPatenting activity in manufacturing organoclays for nanocomposite applications
Naveau, Elodie ULiege; Detrembleur, Christophe ULiege; Jérôme, Christine ULiege et al

in Recent Patents on Materials Science (2009), 2(1), 43-49

For the last two decades, intensive research has been focused on developing reinforced polymers with incorporation of nanometric fillers. Amongst the different types of nanofillers, those based on layered ... [more ▼]

For the last two decades, intensive research has been focused on developing reinforced polymers with incorporation of nanometric fillers. Amongst the different types of nanofillers, those based on layered silicates (commonly known as clays), have been most widely investigated. Dispersing clay sheets on a nanoscopic scale (so-called exfoliation) indeed allows materials with enhanced thermal, mechanical, rheological, flame retardancy and barrier properties to be produced. However, the nanocomposite performances are strongly dependent upon the extent of clay exfoliation. In order to enhance the compatibility between the pristine clay, hydrophilic, and the polymer, hydrophobic, and to achieve a good delamination of the nanolayers, an organo-modification of the clay is most usually necessary. This mini-review will provide an outline of patenting activity in the field of manufacturing organoclays through ionic exchange. The variety of organic modifiers and the diverse processing techniques will be detailed, aiming to extract the most relevant organoclays for successful nanocomposite formation at industrial scale. [less ▲]

Detailed reference viewed: 162 (7 ULiège)