Tomasetti, R., & Arnst, M. (16 June 2025). Graph Abstraction for Efficient Scheduling of Asynchronous Workloads on GPU [Poster presentation]. PASC25, Windisch, Switzerland. |
Gregov, T., Pattyn, F., & Arnst, M. (01 May 2025). Sensitivity of grounding-line migration to ice-shelf pinning [Poster presentation]. EGU General Assembly 2025, Vienna, Austria. doi:10.5194/egusphere-egu25-11628 |
Arnst, M., & Tomasetti, R. (07 March 2024). Design Patterns and Performance Analysis of Polymorphism in Multiphysics FE Assembly on GPU [Paper presentation]. SIAM Conference on Parallel Processing for Scientific Computing (PP24), Baltimore, United States. |
Tomasetti, R., & Arnst, M. (07 March 2024). Efficiently implementing FE boundary conditions using stream-orchestrated execution on GPU [Paper presentation]. SIAM Conference on Parallel Computing for Scientific Computing (PP24), Baltimore, United States. |
Gregov, T., Pattyn, F., & Arnst, M. (10 November 2023). Grounding-line flux conditions for marine ice-sheet systems under effective-pressure-dependent and hybrid friction laws. Journal of Fluid Mechanics, 975. doi:10.1017/jfm.2023.760 |
Delhez, C., Rivière, N., Erpicum, S., Pirotton, M., Archambeau, P., Arnst, M., Bierens, J., & Dewals, B. (2023). Drift of a drowning victim in rivers: conceptualization and global sensitivity analysis under idealized flow conditions. Water Resources Research. doi:10.1029/2022WR034358 |
Schmitz, V., Arnst, M., El kadi Abderrezzak, K., Pirotton, M., Erpicum, S., Archambeau, P., & Dewals, B. (2023). Global sensitivity analysis of a dam breaching model: To which extent is parameter sensitivity case-dependent? Water Resources Research. doi:10.1029/2022WR033894 |
Gregov, T., Pattyn, F., & Arnst, M. (24 April 2023). Investigation of numerical continuation methods for marine ice-sheet systems formulated as contact problems [Poster presentation]. EGU General Assembly 2023, Vienne, Austria. doi:10.5194/egusphere-egu23-8932 |
Coheur, J., Magin, T., Chatelain, P., & Arnst, M. (2023). Bayesian identification of pyrolysis model parameters for thermal protection materials using an adaptive gradient-informed sampling algorithm with application to a Mars atmospheric entry. International Journal for Uncertainty Quantification, 13 (2), 53-80. doi:10.1615/int.j.uncertaintyquantification.2022042928 |
Gregov, T., Pattyn, F., & Arnst, M. (01 September 2022). Numerical continuation methods for marine ice-sheet systems with various friction laws [Paper presentation]. ACOMEN 2022, Liège, Belgium. |
Budo, A., Bartholet Jules, Hillewaert, K., Arnst, M., & Terrapon, V. (02 August 2022). Geometrical variability in a through-flow model: manufacturing tolerance effects on compressor blades [Paper presentation]. ACOMEN 2022. |
Gregov, T., Pattyn, F., & Arnst, M. (09 June 2022). A primal-dual formulation for numerical simulations of marine ice sheets with various friction laws [Paper presentation]. ECCOMAS Congress 2022, Oslo, Norway. |
Gregov, T., Pattyn, F., & Arnst, M. (24 May 2022). Extension of marine ice-sheet flux conditions to effective-pressure-dependent and hybrid friction laws [Paper presentation]. EGU General Assembly 2022, Vienne, Austria. doi:10.5194/egusphere-egu22-10208 |
Denoël, V.* , Bruyère, O.* , Louppe, G., Bureau, F., D'ORIO, V., Fontaine, S., Gillet, L., Guillaume, M., Haubruge, E., Lange, A.-C., Michel, F., Hulle, R. V., Arnst, M., Donneau, A.-F.* , & Saegerman, C.*. (04 March 2022). Decision-based interactive model to determine re-opening conditions of a large university campus in Belgium during the first COVID-19 wave. Archives of Public Health, 80 (1). doi:10.1186/s13690-022-00801-w * These authors have contributed equally to this work. |
Schmitz, V., Arnst, M., El Kadi Abderrezzak, K., Pirotton, M., Erpicum, S., Archambeau, P., & Dewals, B. (2022). Uncertainty analysis of a lumped physically based numerical model of dam breaching. In Proceedings of the 39th IAHR World Congress. International Association for Hydro-Environment Engineering and Research (IAHR). doi:10.3850/IAHR-39WC2521716X2022466 |
Budo, A., Mouriaux Sophie, Bartholet Jules, Arnst, M., & Terrapon, V. (14 October 2021). Geometric uncertainties in through-flow model [Paper presentation]. Journées des doctorants Safran (JDD HAIDA). |
Coheur, J., Torres-Herrador, F., Chatelain, P., Mansour, N., Magin, T., & Arnst, M. (2021). Analytical solution for multi-component pyrolysis simulations of thermal protection materials. Journal of Materials Science. doi:10.1007/s10853-020-05727-8 |
Torres-Herrador, F.* , Coheur, J.* , Panerai, F., Magin, T., Arnst, M., Mansour, N., & Blondeau, J. (2020). Competitive kinetic model for the pyrolysis of the Phenolic Impregnated Carbon Ablator. Aerospace Science and Technology. doi:10.1016/j.ast.2020.105784 * These authors have contributed equally to this work. |
Arnst, M. (2020). Elements of stochastic processes 2019-2020: course material. |
Bulthuis, K., Pattyn, F., & Arnst, M. (25 June 2019). Estimation of confidence regions for random excursion sets with application to large-scale ice-sheet simulations [Paper presentation]. UNCECOMP 2019: 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Hersonissos, Greece. |
Liegeois, K., Boman, R., Phipps, E., Mertens, P., Krasikov, Y., & Arnst, M. (25 June 2019). Ensemble propagation for efficient uncertainty quantification: Application to the thermomechanical modeling of a first mirror for the ITER core CXRS diagnostics [Paper presentation]. UNCECOMP 2019 / 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering. |
Liegeois, K., Boman, R., Phipps, E., & Arnst, M. (25 April 2019). Efficient parametric computations using ensemble propagation for high dimensional finite element models [Paper presentation]. CÉCI Scientific Meeting. |
Bulthuis, K., Arnst, M., Sun, S., & Pattyn, F. (24 April 2019). Uncertainty quantification of the multi-centennial response of the Antarctic Ice Sheet to climate change. The Cryosphere, 13, 1349-1380. doi:10.5194/tc-13-1349-2019 |
Bulthuis, K., Arnst, M., Sainan, S., & Pattyn, F. (11 March 2019). Uncertainty Quantification of the Multi-centennial Response of the Antarctic Ice Sheet to climate change [Paper presentation]. SIAM Conference on Mathematical & Computational Issues in the Geosciences (GS19), Houston, United States. |
Liegeois, K., Boman, R., Phipps, E., & Arnst, M. (28 February 2019). Ensemble Propagation for Efficient Uncertainty Quantification of Mechanical Contact Problems [Paper presentation]. SIAM Conference on Computational Science and Engineering. |
Liegeois, K., Boman, R., Phipps, E., Wiesner, T., & Arnst, M. (17 April 2018). On the Ensemble Propagation for Efficient Uncertainty Quantification of Mechanical Contact Problems [Paper presentation]. SIAM Conference on Uncertainty Quanti cation 2018. |
Bulthuis, K., Arnst, M., Pattyn, F., & Favier, L. (16 April 2018). Stochastic Modeling of Uncertainties in Fast Essential Antarctic Ice Sheet Models [Paper presentation]. SIAM Conference on Uncertainty Quantification 2018, Garden Grove (Los Angeles), United States - California. |
Coheur, J., Magin, T., Chatelain, P., & Arnst, M. (April 2018). Bayesian Inference on Uncertain Kinetic Parameters for the Pyrolysis of Composite Ablators [Paper presentation]. SIAM Conference on Uncertainty Quantification (UQ18), Los Angeles, United States. |
Hoang Truong, V., Wu, L., Golinval, J.-C., Arnst, M., & Noels, L. (April 2018). Stochastic multiscale model of MEMS stiction accounting for high order statistical moments of non-Gaussian contacting surfaces. Journal of Microelectromechanical Systems, 27 (2), 137-155. doi:10.1109/JMEMS.2018.2797133 |
Bulthuis, K., Arnst, M., & Pattyn, F. (2017). Modelling ice flow for large-scale ice-sheet simulations. |
Arnst, M. (August 2017). Guiding model improvement in dynamic substructuring: sensitivity analysis and nonparametric probabilistic modeling approach [Paper presentation]. ICOSSAR 2017 International Conference on Structural Safety & Reliability. |
Liegeois, K., Boman, R., Mertens, P., Panin, A., Phipps, E., & Arnst, M. (19 July 2017). Ensemble propagation for efficient uncertainty quantification on emerging architectures: Application to thermomechanical contact [Poster presentation]. Quantification of Uncertainty: Improving Efficiency and Technology, Trieste, Italy. |
Hoang Truong, V., Wu, L., Paquay, S., Golinval, J.-C., Arnst, M., & Noels, L. (June 2017). A computational stochastic multiscale methodology for MEMS structures involving adhesive contact. Tribology International, 110, 401-425. doi:10.1016/j.triboint.2016.10.007 |
Bulthuis, K., Arnst, M., Pattyn, F., & Favier, L. (April 2017). Uncertainty quantification of Antarctic contribution to sea-level rise using the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model [Paper presentation]. European Geosciences Union General Assembly 2017, Vienna, Austria. |
Coheur, J., Arnst, M., Chatelain, P., & Magin, T. (01 March 2017). Uncertainty Quantification of Aerothermal Flow Simulation Through Low-Density Ablative Thermal Protection Materials [Poster presentation]. 8th VKI PhD Symposium, Rhode-Saint-Genèse, Belgium. |
Bulthuis, K., Arnst, M., Pattyn, F., & Favier, L. (05 September 2016). Instability and abrupt changes in marine ice sheet behaviour [Paper presentation]. 1st CRITICS Workshop and Summer School on Critical Transitions in Complex Systems, Kulhuse, Denmark. |
Arnst, M. (09 June 2016). Sensitivity analysis of parametric uncertainties and modeling errors in generalized probabilistic modeling [Paper presentation]. ECCOMAS European Congress on Computational Methods in Applied Sciences and Engineering. |
Arnst, M., Liegeois, K., Boman, R., & Ponthot, J.-P. (18 May 2016). Comparison of interval and stochastic methods for uncertainty quantification in metal forming [Paper presentation]. ICOMP International Conference on COmputational methods in Manufacturing Processes. |
Arnst, M., Abello Álvarez, B., Boman, R., & Ponthot, J.-P. (26 May 2015). Parametric uncertainty quantification in the presence of modeling errors: Bayesian approach and application to metal [Paper presentation]. UNCECOMP International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crète, Greece. |
Arnst, M. (May 2015). Nonintrusive probabilistic quantification of uncertainties with application to the management of manufacturing tolerances [Paper presentation]. IE-net Managing, handling, and modeling uncertainty in mechanical design. |
Lucas, V., Wu, L., Arnst, M., Golinval, J.-C., Paquay, S., & Noels, L. (27 August 2014). Prediction of meso-scale mechanical properties of poly-silicon materials [Paper presentation]. EMMC14 - European Mechanics of Materials Conference 2014, Gothenburg, Sweden. |
Hoang Truong, V., Wu, L., Arnst, M., Golinval, J.-C., Muller, R., Voicu, R., & Noels, L. (26 June 2014). A probabilistic model of the adhesive contact forces between rough surfaces in the MEMS stiction context [Paper presentation]. 6th International Conference on Advanced Computational Methods in Engineering, ACOMEN 2014, Ghent, Belgium. |
Lucas, V., Wu, L., Arnst, M., Golinval, J.-C., Paquay, S., Nguyen, V. D., & Noels, L. (2014). Prediction of macroscopic mechanical properties of a polycrystalline microbeam subjected to material uncertainties. In Á. Cunha, E. Caetano, P. Ribeiro, ... G. Muller (Eds.), Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 (pp. 2691-2698). |
Arnst, M. (31 March 2014). UQ Benchmark Problems for Multiphysics Modeling [Paper presentation]. SIAM Conference on Uncertainty Quantification, Savannah, Georgia, United States. |
Arnst, M., & Ponthot, J.-P. (2014). An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. International Journal for Uncertainty Quantification, 4, 387-421. doi:10.1615/Int.J.UncertaintyQuantification.2014006990 |
Lucas, V., Wu, L., Arnst, M., Golinval, J.-C., Paquay, S., & Noels, L. (December 2013). Probabilistic model for MEMS micro-beam resonance frequency made of polycrystalline linear anisotropic material [Paper presentation]. 5th Asia Pacific Congress on Computational Mechanics & 4th International Synposium on Computational Mechanics APCOM & ISCM 2013, Singapore, Singapore. |
Arnst, M. (2007). Inversion of probabilistic models of structures using measured transfer functions [Doctoral thesis, Ecole Centrale Paris]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/103160 |