Publications of Océane JAQUET
Bookmark and Share    
Full Text
See detailBrain functional connectivity differentiates dexmedetomidine from propofol and natural sleep
Guldenmund, Pieter; VANHAUDENHUYSE, Audrey ULiege; Sanders, R. D. et al

in British Journal of Anaesthesia (2017), 119(4), 674-684

Background We used functional connectivity measures from brain resting state functional magnetic resonance imaging to identify human neural correlates of sedation with dexmedetomidine or propofol and ... [more ▼]

Background We used functional connectivity measures from brain resting state functional magnetic resonance imaging to identify human neural correlates of sedation with dexmedetomidine or propofol and their similarities with natural sleep. Methods Connectivity within the resting state networks that are proposed to sustain consciousness generation was compared between deep non-rapid-eye-movement (N3) sleep, dexmedetomidine sedation, and propofol sedation in volunteers who became unresponsive to verbal command. A newly acquired dexmedetomidine dataset was compared with our previously published propofol and N3 sleep datasets. Results In all three unresponsive states (dexmedetomidine sedation, propofol sedation, and N3 sleep), within-network functional connectivity, including thalamic functional connectivity in the higher-order (default mode, executive control, and salience) networks, was significantly reduced as compared with the wake state. Thalamic functional connectivity was not reduced for unresponsive states within lower-order (auditory, sensorimotor, and visual) networks. Voxel-wise statistical comparisons between the different unresponsive states revealed that thalamic functional connectivity with the medial prefrontal/anterior cingulate cortex and with the mesopontine area was reduced least during dexmedetomidine-induced unresponsiveness and most during propofol-induced unresponsiveness. The reduction seen during N3 sleep was intermediate between those of dexmedetomidine and propofol. Conclusions Thalamic connectivity with key nodes of arousal and saliency detection networks was relatively preserved during N3 sleep and dexmedetomidine-induced unresponsiveness as compared to propofol. These network effects may explain the rapid recovery of oriented responsiveness to external stimulation seen under dexmedetomidine sedation. Trial registry number Committee number: 'Comité d'Ethique Hospitalo-Facultaire Universitaire de Liège' (707); EudraCT number: 2012-003562-40; internal reference: 20121/135; accepted on August 31, 2012; Chair: Prof G. Rorive. As it was considered a phase I clinical trial, this protocol does not appear on the EudraCT public website. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. [less ▲]

Detailed reference viewed: 52 (10 ULiège)
Full Text
See detailResting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers
BONHOMME, Vincent ULiege; VANHAUDENHUYSE, Audrey ULiege; Demertzi, Athina ULiege et al

in Anesthesiology (2016), 125(5), 873-878

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control ... [more ▼]

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Methods: Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Results: Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Conclusions: Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. [less ▲]

Detailed reference viewed: 88 (29 ULiège)