Article (Scientific journals)
Can regional aerial images from orthophoto surveys produce high quality photogrammetric Canopy Height Model? A single tree approach in Western Europe
Michez, Adrien; Huylenbroeck, Léo; Bolyn, Corentin et al.
2020In International Journal of Applied Earth Observation and Geoinformation, 92, p. 102190
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0303243420303603-main.pdf
Publisher postprint (1.93 MB)
Download

Under a Creative Commons license


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Photogrammetry; Structure from motion; Tree height; Large frame aerial imagery
Abstract :
[en] Forest monitoring tools are needed to promote effective and data driven forest management and forest policies. Remote sensing techniques can increase the speed and the cost-efficiency of the forest monitoring as well as large scale mapping of forest attribute (wall-to-wall approach). Digital Aerial Photogrammetry (DAP) is a common cost-effective alternative to airborne laser scanning (ALS) which can be based on aerial photos routinely acquired for general base maps. DAP based on such pre-existing dataset can be a cost effective source of large scale 3D data. In the context of forest characterization, when a quality Digital Terrain Model (DTM) is available, DAP can produce photogrammetric Canopy Height Model (pCHM) which describes the tree canopy height. While this potential seems pretty obvious, few studies have investigated the quality of regional pCHM based on aerial stereo images acquired by standard official aerial surveys. Our study proposes to evaluate the quality of pCHM individual tree height estimates based on raw images acquired following such protocol using a reference filed-measured tree height database. To further ensure the replicability of the approach, the pCHM tree height estimates benchmarking only relied on public forest inventory (FI) information and the photogrammetric protocol was based on low-cost and widely used photogrammetric software. Moreover, our study investigates the relationship between the pCHM tree height estimates based on the neighboring forest parameter provided by the FI program. Our results highlight the good agreement of tree height estimates provided by pCHM using DAP with both field measured and ALS tree height data. In terms of tree height modeling, our pCHM approach reached similar results than the same modeling strategy applied to ALS tree height estimates. Our study also identified some of the drivers of the pCHM tree height estimate error and found forest parameters like tree size (diameter at breast height) and tree type (evergreenness/deciduousness) as well as the terrain topography (slope) to be of higher importance than image survey parameters like the variation of the overlap or the sunlight condition in our dataset. In combination with the pCHM tree height estimate, the terrain slope, the Diameter at Breast Height (DBH) and the evergreenness factor were used to fit a multivariate model predicting the field measured tree height. This model presented better performance than the model linking the pCHM estimates to the field tree height estimates in terms of r² (0.90 VS 0.87) and root mean square error (RMSE, 1.78 VS 2.01 m). Such aspects are poorly addressed in literature and further research should focus on how pCHM approaches could integrate them to improve forest characterization using DAP and pCHM. Our promising results can be used to encourage the use of regional aerial orthophoto surveys archive to produce large scale quality tree height data at very low additional costs, notably in the context of updating national forest inventory programs.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Michez, Adrien  ;  Université de Liège - ULiège > Département de géographie > Département de géographie
Huylenbroeck, Léo ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Bolyn, Corentin  ;  Université de Liège - ULiège > Terra
Latte, Nicolas ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Bauwens, Sébastien  ;  Université de Liège - ULiège > Terra
Lejeune, Philippe ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Can regional aerial images from orthophoto surveys produce high quality photogrammetric Canopy Height Model? A single tree approach in Western Europe
Publication date :
01 October 2020
Journal title :
International Journal of Applied Earth Observation and Geoinformation
ISSN :
1569-8432
eISSN :
1872-826X
Publisher :
International Institute for Aerial Survey and Earth Sciences, Netherlands
Volume :
92
Pages :
102190
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
RiReMo - Riparian Remote Monitoring - Grants SR/00/347 and SR/12/383
Funders :
Politique Scientifique Fédérale (Belgique) - BELSPO
Available on ORBi :
since 06 July 2020

Statistics


Number of views
142 (17 by ULiège)
Number of downloads
92 (11 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
6

Bibliography


Similar publications



Contact ORBi