Article (Périodiques scientifiques)
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Wu, Ling; Nguyen, Van Dung; Kilingar, Nanda Gopala et al.
2020In Computer Methods in Applied Mechanics and Engineering, 369, p. 113234
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2020_CMAME_RNN.pdf
Postprint Auteur (7.34 MB)
Télécharger

NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 369 (2020) 113234, DOI: 10.1016/j.cma.2020.113234


Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial Neural Network; Recurrent Neural Netwrok; Surrogate; Multi-scale; Elasto-plasticity; Data-driven
Résumé :
[en] An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyzes in solid mechanics. The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors. On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is self-equipped with hidden variables that have the ability of tracking loading history. On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data. In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths. The random loading paths are generated in a way similar to a random walking in stochastic process and allows generating data for a wide range of strain-stress states and state evolution. The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles. It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude.
Centre de recherche :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Ingénierie mécanique
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Kilingar, Nanda Gopala ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Langue du document :
Anglais
Titre :
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Date de publication/diffusion :
01 septembre 2020
Titre du périodique :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
369
Pagination :
113234
Peer reviewed :
Peer reviewed vérifié par ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Projet européen :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Intitulé du projet de recherche :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme
Organisme subsidiant :
CE - Commission Européenne [BE]
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
CÉCI - Consortium des Équipements de Calcul Intensif [BE]
Commentaire :
Data can be downloaded on https://gitlab.uliege.be/moammm/moammmpublic/tree/master/publicationsData/2020_CMAME_RNN or https://doi.org/10.5281/zenodo.3902663
Disponible sur ORBi :
depuis le 26 juin 2020

Statistiques


Nombre de vues
599 (dont 121 ULiège)
Nombre de téléchargements
1115 (dont 29 ULiège)

citations Scopus®
 
96
citations Scopus®
sans auto-citations
89
OpenCitations
 
50

Bibliographie


Publications similaires



Contacter ORBi