Article (Périodiques scientifiques)
Asynchronous carbon sink saturation in African and Amazonian tropical forests
Hubau, Wannes; Lewis, Simon L.; Phillips, Oliver L. et al.
2020In Nature, 579, p. 80-87
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Hubau_Lewis et al 2020 Nature.pdf
Postprint Éditeur (13 MB)
Demander un accès

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Climate-change impacts; Ecosystem ecology; Forest ecology; Projection and prediction; Tropical ecology
Résumé :
[en] Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1–3. Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53–0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7–9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth’s climate.
Disciplines :
Sciences de l’environnement & écologie
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Auteur, co-auteur :
Hubau, Wannes
Lewis, Simon L.
Phillips, Oliver L.
Affum-Baffoe, Kofi
Beeckman, Hans
Cuni-Sanchez, Aida
Daniels, Armandu K.
Ewango, Corneille E.N.
Fauset, Sophie
Mukinzi, Jacques M.
Sheil, Douglas
Sonké, Bonaventure
Sullivan, Martin J. P.
Sunderland, Terry C. H.
Taedoumg, Hermann
Thomas, Sean C.
White, Lee J. T.
Abernethy, Katharine A.
Adu-Bredu, Stephen
Amani, Christian A.
Baker, Timothy R.
Banin, Lindsay F.
Baya, Fidèle
Begne, Serge K.
Bennett, Amy C.
Benedet, Fabrice
Bitariho, Robert
Bocko, Yannick E.
Boeckx, Pascal
Boundja, Patrick
Brienen, Roel J. W.
Brncic, Terry
Chezeaux, Eric
Chuyong, George B.
Clark, Connie J.
Collins, Murray
Comiskey, James A.
Coomes, David A.
Dargie, Greta C.
de Hauleville, Thalès
Djuikouo Kamdem, Marie Noel
Doucet, Jean-Louis ;  Université de Liège - ULiège > Département GxABT > Laboratoire de Foresterie des régions trop. et subtropicales
Esquivel-Muelbert, Adriane
Feldpausch, Ted R.
Fofanah, Alusine
Foli, Ernest G.
Gilpin, Martin
Gloor, Emanuel
Gonmadje, Christelle
Gourlet-Fleury, Sylvie
Hall, Jefferson S.
Hamilton, Alan C.
Harris, David J.
Hart, Terese B.
Hockemba, Mireille B. N.
Hladik, Annette
Ifo, Suspense A.
Jeffery, Kathryn J.
Jucker, Tommaso
Yakusu, Emmanuel Kasongo
Kearsley, Elizabeth
Kenfack, David
Koch, Alexander
Leal, Miguel E.
Levesley, Aurora
Lindsell, Jeremy A.
Lisingo, Janvier
Lopez-Gonzalez, Gabriela
Lovett, Jon C.
Makana, Jean-Rémy
Malhi, Yadvinder
Marshall, Andrew R.
Martin, Jim
Martin, Emanuel H.
Mbayu, Faustin M.
Medjibe, Vincent P.
Mihindou, Vianet
Mitchard, Edward T. A.
Moore, Sam
Munishi, Pantaleo K. T.
Bengone, Natacha Nssi
Ojo, Lucas
Ondo, Fidèle Evouna
Peh, Kelvin S.-H.
Pickavance, Georgia C.
Poulsen, Axel Dalberg
Poulsen, John R.
Qie, Lan
Reitsma, Jan
Rovero, Francesco
Swaine, Michael D.
Talbot, Joey
Taplin, James
Taylor, David M.
Thomas, Duncan W.
Toirambe, Benjamin
Mukendi, John Tshibamba
Tuagben, Darlington
Umunay, Peter M.
van der Heijden, Geertje M. F.
Verbeeck, Hans
Vleminckx, Jason
Willcock, Simon
Wöll, Hannsjörg
Woods, John T.
Zemagho, Lise
Plus d'auteurs (96 en +) Voir moins
Langue du document :
Anglais
Titre :
Asynchronous carbon sink saturation in African and Amazonian tropical forests
Date de publication/diffusion :
04 mars 2020
Titre du périodique :
Nature
ISSN :
0028-0836
eISSN :
1476-4687
Maison d'édition :
Nature Publishing Group, London, Royaume-Uni
Volume/Tome :
579
Pagination :
80-87
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBi :
depuis le 09 mars 2020

Statistiques


Nombre de vues
156 (dont 19 ULiège)
Nombre de téléchargements
6 (dont 6 ULiège)

citations Scopus®
 
403
citations Scopus®
sans auto-citations
329
OpenCitations
 
291

Bibliographie


Publications similaires



Contacter ORBi