Disponible sur ORBi depuis le
09 octobre 2017
Communication publiée dans un ouvrage (Colloques et congrès scientifiques)
Improving QoE Prediction in Mobile Video through Machine Learning
Casas, Pedro; Wassermann, Sarah
2017 • In Proc. 8th International Conference on Network of the Future
Peer reviewed


Texte intégral
Preprint Auteur (574.83 kB)

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers


Mots-clés :
QoE; Mobile Video Streaming; Predictive Models; Machine Learning
Résumé :
[en] Despite the massive adoption of HTTP adaptive streaming technology, buffering is still the most harmful event for QoE in video streaming. Previous studies have shown that buffering is not only detrimental for the overall user experience, but is also highly correlated to viewer engagement. The occurrence of buffering is particularly critical in cellular networks and mobile video deployments, as network conditions are less stable and network resources more limited. In this context, monitoring and properly predicting the QoE of video streaming services becomes paramount to cellular network operators, who need to offer high quality levels to reduce the risks of customers churning for quality dissatisfaction. In this paper, we present a novel approach to multi-dimensional QoE prediction in mobile video using machine learning models. Contrary to previous models for QoE prediction in video streaming, which are generally uni- or low-dimensional and model the impact of single video descriptors independently, we use a high-dimensional input space to model the impact of buffering and initial delay on QoE.We train and test the proposed models on a publicly available mobile video dataset, generated from subjective QoE tests with real viewers. Besides improving prediction performance, the proposed models show that there is a clear influence of other buffering pattern descriptors generally neglected in previous models - in particular those linked to the occurrence of the last stalling event, shedding light on new KPIs to monitor for better QoE assessment in video streaming.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Casas, Pedro
Wassermann, Sarah ;  Université de Liège - ULiège > Master sc. informatiques, à fin.
Langue du document :
Titre :
Improving QoE Prediction in Mobile Video through Machine Learning
Date de publication/diffusion :
novembre 2017
Nom de la manifestation :
NoF 2017: 8th International Conference on Network of the Future
Lieu de la manifestation :
London, Royaume-Uni
Date de la manifestation :
du 22 novembre 2017 au 24 novembre 2017
Manifestation à portée :
Titre de l'ouvrage principal :
Proc. 8th International Conference on Network of the Future
Peer reviewed :
Peer reviewed
Projet européen :
H2020 - 644399 - MONROE - Measuring Mobile Broadband Networks in Europe
Organisme subsidiant :
CE - Commission Européenne


Nombre de vues
299 (dont 11 ULiège)
Nombre de téléchargements
595 (dont 4 ULiège)

citations Scopus®
citations Scopus®
sans auto-citations


Publications similaires

Contacter ORBi