Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailCrystal structure of arsenuranospathite from Rabejac, Lodève, France
Dal Bo, Fabrice ULiege; Hatert, Frédéric ULiege; Baijot, Maxime ULiege et al

in European Journal of Mineralogy (2015), 27

Detailed reference viewed: 30 (4 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of bassetite and saléeite: new insight into autunite-group minerals
Dal Bo, Fabrice ULiege; Hatert, Frédéric ULiege; Mees, Florias et al

in European Journal of Mineralogy (2016)

Detailed reference viewed: 37 (13 ULiège)
Full Text
Peer Reviewed
See detailThe crystal structure of bertossaite, CaLi2[Al4(PO4)4(OH,F)4]
Hatert, Frédéric ULiege; Lefèvre, Pierre; Fransolet, André-Mathieu ULiege

in Canadian Mineralogist (2011), 49

Detailed reference viewed: 28 (5 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, in complex with Enterobacter cloacae 908R beta-lactamase: evidence for a stereoselective mechanism from docking studies.
Michaux, Catherine; Charlier, Paulette ULiege; Frère, Jean-Marie ULiege et al

in Journal of the American Chemical Society (2005), 127(10), 3262-3

BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, is an active-site-directed inactivator of bacterial beta-lactamases. The crystal structure of Enterobacter cloacae 908R class C beta-lactamase in ... [more ▼]

BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, is an active-site-directed inactivator of bacterial beta-lactamases. The crystal structure of Enterobacter cloacae 908R class C beta-lactamase in complex with BRL 42715, docking, and energy minimization studies explain stereoselectivity of the binding of C6-(heterocyclic methylene)penems against class C beta-lactamase. [less ▲]

Detailed reference viewed: 28 (0 ULiège)
Peer Reviewed
See detailCrystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide
Merritt, E. A.; Sarfaty, S.; van den Akker, F. et al

in Protein Science : A Publication of the Protein Society (1994), 3(2), 166-75

Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to ... [more ▼]

Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction. [less ▲]

Detailed reference viewed: 34 (1 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue
Wouters, J.; Fonze, E.; Vermeire, M. et al

in Cellular and Molecular Life Sciences (2003), 60(8), 1764-1773

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 ... [more ▼]

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases. [less ▲]

Detailed reference viewed: 25 (0 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of extended-spectrum beta-lactamase Toho-1: Insights into the molecular mechanism for catalytic reaction and substrate specificity expansion
Ibuka, A. S.; Ishii, Y.; Galleni, Moreno ULiege et al

in Biochemistry (2003), 42(36), 10634-10643

The crystallographic structure of the class A beta-lactamase Toho-1, an extended-spectrum beta-lactamase with potent activity against expanded-spectrum cephems, has been determined at 1.65 Angstrom ... [more ▼]

The crystallographic structure of the class A beta-lactamase Toho-1, an extended-spectrum beta-lactamase with potent activity against expanded-spectrum cephems, has been determined at 1.65 Angstrom resolution. The result reveals that the Lys73 side chain can adopt two alternative conformations. The predominant conformation of Lys73 is different from that observed in the E166A mutant, indicating that removal of the Glu166 side chain changes the conformation of the Lys73 side chain and thus the interaction between Lys73 and Glu166. The Lys73 side chain would play an important role in proton relay, switching its conformation from one to the other depending on the circumstances. The electron density map also implies possible rotation of Ser237. Comparison of the Toho-1 structure with the structure of other class A beta-lactamases shows that the hydroxyl group of Ser237 is likely to rotate through interaction with the carboxyl group of the substrate. Another peculiarity is the existence of three sulfate ions positioned in or near the substrate-binding cavity. One of these sulfate ions is tightly bound to the active center, while the other two are held by a region of positive charge formed by two arginine residues, Arg274 and Arg276. This positively charged region is speculated to represent a pseudo-binding site of the beta-lactam antibiotics, presumably catching the methoxyimino group of the third-generation cephems prior to proper binding in the substrate-binding cleft for hydrolysis. This high-resolution structure, together with detailed kinetic analysis of Toho-1, provides a new hypothesis for the catalytic mechanism and substrate specificity of Toho-1. [less ▲]

Detailed reference viewed: 164 (0 ULiège)
Full Text
Peer Reviewed
See detailCrystal Structure of Human Peroxiredoxin 5, a Novel Type of Mammalian Peroxiredoxin at 1.5 Ǻ Resolution
Declercq, Jean-Paul; Evrard, Christine ULiege; Clippe, André et al

in Journal of Molecular Biology (2001), 311

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules ... [more ▼]

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 Ǻ resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 Ǻ although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disul®de intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed. [less ▲]

Detailed reference viewed: 57 (0 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli
Sauvage, Eric ULiege; Derouaux, Adeline ULiege; Fraipont, Claudine ULiege et al

in PLoS ONE (2014)

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is ... [more ▼]

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357-577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module with unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388-165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357-577 dimerization. [less ▲]

Detailed reference viewed: 49 (17 ULiège)
Peer Reviewed
See detailCrystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme
Mande, S. C.; Mainfroid, V.; Kalk, K. H. et al

in Protein Science : A Publication of the Protein Society (1994), 3(5), 810-21

The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement ... [more ▼]

The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer of 53,000 Da, with only 1 of the subunits binding the inhibitor. The so-called flexible loop, comprising residues 168-174, is in its "closed" conformation in the subunit that binds the inhibitor, and in the "open" conformation in the other subunit. The tips of the loop in these 2 conformations differ up to 7 A in position. The RMS difference between hTIM and the enzyme of Trypanosoma brucei, the causative agent of sleeping sickness, is 1.12 A for 487 C alpha positions with 53% sequence identity. Significant sequence differences between the human and parasite enzymes occur at about 13 A from the phosphate binding site. The chicken and human enzymes have an RMS difference of 0.69 A for 484 equivalent residues and about 90% sequence identity. Complementary mutations ensure a great similarity in the packing of side chains in the core of the beta-barrels of these 2 enzymes. Three point mutations in hTIM have been correlated with severe genetic disorders ranging from hemolytic disorder to neuromuscular impairment. Knowledge of the structure of the human enzyme provides insight into the probable effect of 2 of these mutations, Glu 104 to Asp and Phe 240 to Ile, on the enzyme. The third mutation reported to be responsible for a genetic disorder, Gly 122 to Arg, is however difficult to explain. This residue is far away from both catalytic centers in the dimer, as well as from the dimer interface, and seems unlikely to affect stability or activity. Inspection of the 3-dimensional structure of trypanosomal triosephosphate isomerase, which has a methionine at position 122, only increased the mystery of the effects of the Gly to Arg mutation in the human enzyme. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
Peer Reviewed
See detailCrystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions
Delboni, Luis F; Mande, Shekhar C; Rentier-Delrue, Françoise ULiege et al

in Protein Science : A Publication of the Protein Society (1995), 4(12), 2594-604

The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a ... [more ▼]

The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the "closed" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailThe crystal structure of sursassite from the Lienne valley, Stavelot Massif, Belgium
Hatert, Frédéric ULiege; Fransolet, André-Mathieu ULiege; Wouters, Johan et al

in European Journal of Mineralogy (2008), 20

Detailed reference viewed: 19 (1 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the actin-binding domain of alpha-actinin 1: evaluating two competing actin-binding models.
Borrego-Diaz, Emma; Kerff, Frédéric ULiege; Lee, Sung Haeng et al

in Journal of Structural Biology (2006), 155(2), 230-8

Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these ... [more ▼]

Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these proteins consists of two consecutive calponin homology (CH) domains. Electron microscopy studies on ABDs appear to support two competing actin-binding models, extended and compact, whereas the crystal structures typically display a compact conformation. We have determined the 1.7A resolution structure of the ABD of alpha-actinin 1, a ubiquitously expressed isoform. The structure displays the classical compact conformation. We evaluated the two binding models by surface conservation analysis. The results show a conserved surface that spans both domains and corresponds to two previously identified actin-binding sites (ABS2 and ABS3). A third, and probably less important site, ABS1, is mostly buried in the compact conformation. However, a thorough examination of existing structures suggests a weak and semi-polar binding interface between the two CHs, leaving open the possibility of domain reorientation or opening. Our results are consistent with a two-step binding mechanism in which the ABD interacts first in the compact form observed in the structures, and then transitions toward a higher affinity state, possibly through minor rearrangement of the domains. [less ▲]

Detailed reference viewed: 48 (1 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins.
Sauvage, Eric ULiege; Herman, Raphaël ULiege; Petrella, Stephanie et al

in Journal of Biological Chemistry (2005), 280(35), 31249-56

Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam ... [more ▼]

Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams. [less ▲]

Detailed reference viewed: 73 (21 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide
Sauvage, Eric ULiege; Duez, Colette ULiege; Herman, Raphaël ULiege et al

in Journal of Molecular Biology (2007), 371(2), 528-539

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram ... [more ▼]

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha'-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A 13-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution Of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs. (C) 2007 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 73 (17 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the C47S mutant of human peroxiredoxin 5
Evrard, Christine ULiege; Smeets, Aude; Knoops, Bernard et al

in Journal of Chemical Crystallography (2004), 34

In the crystal structure of the reduced form of the wild-type human peroxiredoxin 5, the presence of a benzoate ion in direct interaction with the peroxidatic cysteine (Cys 47) appeared as a rather ... [more ▼]

In the crystal structure of the reduced form of the wild-type human peroxiredoxin 5, the presence of a benzoate ion in direct interaction with the peroxidatic cysteine (Cys 47) appeared as a rather intriguing feature since it is known that the benzoate ion can play the role of a specific hydroxyl radical scavenger. The crystal structure of the C47S mutant of the same enzyme has been crystallized in the tetragonal system, space group P41212, with a = 65.65 Å, c = 122.04 Å. It confirms the presence of this benzoate ion in spite of the mutation into a serine of the Cys 47 residue to which the benzoate ion was directly linked in the wild-type structure. The benzoate ion seems to be stabilized by hydrophobic contacts on both sides of the aromatic ring. In this matter, the α5 helix, which is specific to peroxiredoxin 5 among mammalian peroxiredoxins, plays an important role. These hydrophobic contacts also allow to suggest why the benzoate ion disappears when the molecule is oxidized. [less ▲]

Detailed reference viewed: 11 (0 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the catalytic domain of MMP-16/MT3-MMP: Characterization of MT-MMP specific features
Lang, R.; Braun, M.; Sounni, Nor Eddine ULiege et al

in Journal of Molecular Biology (2004), 336(1), 213-225

Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this ... [more ▼]

Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this indirect effect on the cellular environment, these MT-MMPs degrade extracellular matrix proteins, and their overproduction is associated with tumor growth. We have solved the structure of the catalytic domain (cd) of MT3-MMP/MMP-16 in complex with the hydroxamic acid inhibitor batimastat. CdMT3-MMP exhibits a classical MMP-fold with similarity to MT1-MMP. Nevertheless, it also shows unique properties such as a modified MT-specific loop and a closed S1' specificity pocket, which might help to design specific inhibitors. Some MT-MMP-specific features, derived from the crystal structures of MT-1-MMP determined previously and MT3-MMP, and revealed in recent mutagenesis experiments, explain the impaired interaction of the MT-MMPs with TIMP-1. Docking experiments with proMMP-2 show some exposed loops including the MT-loop of cdMT3-MMP involved in the interaction with the proMMP-2 prodomain in the activation encounter complex. This model might help to understand the experimentally proven importance of the MT-loop for the activation of proMMP-2. (C) 2003 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 38 (3 ULiège)