References of "ChemMedChem"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFully Automated Synthesis and Evaluation of [ 18 F]BPAM121: Potential of an AMPA Receptor Positive Allosteric Modulator as PET Radiotracer
Manos-Turvey, A.; Becker, Guillaume ULiege; Francotte, Pierre ULiege et al

in ChemMedChem (2019), 14(7), 788-795

Alzheimer's disease (AD) remains a significant burden on society. In the search for new AD drugs, modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are of particular ... [more ▼]

Alzheimer's disease (AD) remains a significant burden on society. In the search for new AD drugs, modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are of particular interest, as loss of synaptic AMPARs has been linked to AD learning and memory deficits. Previously reported fluorine-containing BPAM121, an AMPA positive allosteric modulator (pam) with high activity, low toxicity, and slow metabolism, was considered to be a perfect 18 F-labeled candidate for positron emission tomography (PET) AD diagnostic investigations. For the preclinical use of this compound, an automated synthesis avoiding human radiation exposure was developed. The detailed production of [ 18 F]BPAM121 in relatively high quantity using a commercial FASTlab synthesizer from GE Healthcare coupled with a full set of quality controls is presented, along with procedures for the synthesis of the tosylated precursor and the fluorinated reference. To evaluate the clinical usefulness of [ 18 F]BPAM121 as a potential AD diagnostic, some in vivo studies in mice were then realized, alongside blocking and competition studies. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim [less ▲]

Detailed reference viewed: 18 (2 ULiège)
Full Text
Peer Reviewed
See detail1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases
Sevaille, Laurent; Gavara, Laurent; Bebrone, Carine et al

in ChemMedChem (2017), 12

Metallo-β-lactamases (MBLs) cause resistance of Gram-negative bacteria to β-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL ... [more ▼]

Metallo-β-lactamases (MBLs) cause resistance of Gram-negative bacteria to β-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL inhibitors of clinical value are still lacking. We previously identified the original binding mode of 4-amino-2,4-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione (compound IIIA) within the dizinc active site of the L1 MBL. Herein we present the crystallographic structure of a complex of L1 with the corresponding non-amino compound IIIB (1,2-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione). Unexpectedly, the binding mode of IIIB was similar but reverse to that of IIIA. The 3 D structures suggested that the triazole-thione scaffold was suitable to bind to the catalytic site of dizinc metalloenzymes. On the basis of these results, we synthesized 54 analogues of IIIA or IIIB. Nineteen showed IC50 values in the micromolar range toward at least one of five representative MBLs (i.e., L1, VIM-4, VIM-2, NDM-1, and IMP-1). Five of these exhibited a significant inhibition of at least four enzymes, including NDM-1, VIM-2, and IMP-1. Active compounds mainly featured either halogen or bulky bicyclic aryl substituents. Finally, some compounds were also tested on several microbial dinuclear zinc-dependent hydrolases belonging to the MBL-fold superfamily (i.e., endonucleases and glyoxalase II) to explore their activity toward structurally similar but functionally distinct enzymes. Whereas the bacterial tRNases were not inhibited, the best IC50 values toward plasmodial glyoxalase II were in the 10 μm range. [less ▲]

Detailed reference viewed: 126 (12 ULiège)
Full Text
Peer Reviewed
See detailBis-(1,2,3,4-tetrahydroisoquinolinium): a chiral scaffold for developing high affinity ligands for SK channels
Liégeois, Jean-François ULiege; Wouters, Johan; Seutin, Vincent ULiege et al

in ChemMedChem (2014), 9

N-Methyl-bis-(1,2,3,4-tetrahydroisoquinolinium) analogues derived from AG525 (1,1'-(propane-1,3-diyl)-bis-(6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline)) stereoisomers and tetrandrine, a rigid ... [more ▼]

N-Methyl-bis-(1,2,3,4-tetrahydroisoquinolinium) analogues derived from AG525 (1,1'-(propane-1,3-diyl)-bis-(6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline)) stereoisomers and tetrandrine, a rigid bis-(1,2,3,4-tetrahydroisoquinoline) analogue with an S,S configuration, were synthesized and tested for their affinity for small-conductance calcium-activated potassium channel (SK/KCa2) subtypes using radioligand binding assays. A significant increase in affinity was observed for the quaternized analogues over the parent 1,2,3,4-tetrahydroisoquinoline compounds. Interestingly, the impact of stereochemistry was not the same in the two groups of compounds. For quaternized analogues, affinities of S,S and R,R isomers for SK2 and SK3 channels were similar and in both cases higher than that of the meso derivative. Among the bis-tetrahydroisoquinoline compounds, the S,S isomers exhibited high affinity, while the R,R and meso isomers had similarly lower affinities. Furthermore, the SK2/SK3 selectivity ratio was slightly increased for quaternized analogues. Bis-(1,2,3,4-tetrahydroisoquinolinium) represents a new scaffold for the development of high-affinity ligands for SK channel subtypes [less ▲]

Detailed reference viewed: 54 (22 ULiège)
Full Text
Peer Reviewed
See detailInhibition Studies of Mycobacterium tuberculosis Salicylate Synthase (MbtI)
Manos-Turvey, Alexandra ULiege; Bulloch, Esther M. M.; Rutledge, Peter J. et al

in ChemMedChem (2010), 5(7), 1067-1079

Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This ... [more ▼]

Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. [less ▲]

Detailed reference viewed: 21 (1 ULiège)