References of "Astronomy and Astrophysics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAmbiguities in gravitational lens models: the density field from the source position transformation
Unruh, Sandra; Schneider, Peter; Sluse, Dominique ULiege

in Astronomy and Astrophysics (2017), 601

Strong gravitational lensing is regarded as the most precise technique to measure the mass in the inner region of galaxies or galaxy clusters. In particular, the mass within one Einstein radius can be ... [more ▼]

Strong gravitational lensing is regarded as the most precise technique to measure the mass in the inner region of galaxies or galaxy clusters. In particular, the mass within one Einstein radius can be determined with an accuracy of the order of a few percent or better, depending on the image configuration. For other radii, however, degeneracies exist between galaxy density profiles, precluding an accurate determination of the enclosed mass. The source position transformation (SPT), which includes the well-known mass-sheet transformation (MST) as a special case, describes this degeneracy of the lensing observables in a more general way. In this paper we explore properties of an SPT, removing the MST to leading order, that is we consider degeneracies which have not been described before. The deflection field \ahat(čθ) resulting from an SPT is not curl-free in general, and thus not a deflection that can be obtained from a lensing mass distribution. Starting from a variational principle, we construct lensing potentials that give rise to a deflection field \atilde, which differs from \ahat by less than an observationally motivated upper limit. The corresponding mass distributions from these "valid" SPTs are studied: their radial profiles are modified relative to the original mass distribution in a significant and non-trivial way, and originally axi-symmetric mass distributions can obtain a finite ellipticity. These results indicate a significant effect of the SPT on quantitative analyses of lens systems. We show that the mass inside the Einstein radius of the original mass distribution is conserved by the SPT; hence, as is the case for the MST, the SPT does not affect the mass determination at the Einstein radius. Furthermore, we analyse a degeneracy between two lens models, empirically found previously, and show that this degeneracy can be interpreted as being due to an SPT. Thus, degeneracies between lensing mass distributions are not just a theoretical possibility, but do arise in actual lens modeling. [less ▲]

Detailed reference viewed: 20 (5 ULiège)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
Gaia Collaboration; van Leeuwen, F.; Vallenari, A. et al

in Astronomy and Astrophysics (2017), 601

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and ... [more ▼]

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. <BR /> Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. <BR /> Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. <BR /> Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. <BR /> Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A> [less ▲]

Detailed reference viewed: 63 (7 ULiège)
Full Text
Peer Reviewed
See detailFirst constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds
Bagnulo, S.; Nazé, Yaël ULiege; Howarth, I. D. et al

in Astronomy and Astrophysics (2017), 601(A136), 10

Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the ... [more ▼]

Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we carried out spectropolarimetry of five extra-Galactic Of?p stars, and of a couple of dozen neighbouring stars. We were able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field was firmly detected in any of our measurements, but we were able to estimate upper limits on the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required. [less ▲]

Detailed reference viewed: 28 (3 ULiège)
Full Text
Peer Reviewed
See detailThe Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets
Gillon, Michaël ULiege; Demory, B.-O.; Lovis, C. et al

in Astronomy and Astrophysics (2017), 601

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of ... [more ▼]

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117</A> [less ▲]

Detailed reference viewed: 19 (1 ULiège)
Full Text
Peer Reviewed
See detailπ Aquarii is another γ Cassiopeiae object
Nazé, Yaël ULiege; Rauw, Grégor ULiege; Cazorla, Constantin ULiege

in Astronomy and Astrophysics (2017), 602

The γ Cas category is a subgroup of Be stars displaying a strong, hard, and variable thermal X-ray emission. An XMM-Newton observation of π Aqr reveals spectral and temporal characteristics that clearly ... [more ▼]

The γ Cas category is a subgroup of Be stars displaying a strong, hard, and variable thermal X-ray emission. An XMM-Newton observation of π Aqr reveals spectral and temporal characteristics that clearly make this Be star another member of the γ Cas category. Furthermore, π Aqr is a binary but, contrary to γ Cas, the nature of the companion to the Be star is known; it is a non-degenerate (stellar) object and its small separation from the Be star does not leave much room for a putative compact object close to the Be disk. This renders the accretion scenario difficult to apply in this system, and, hence, this discovery favors a disk-related origin for the γ Cas phenomenon. Based on observations collected with the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). [less ▲]

Detailed reference viewed: 19 (4 ULiège)
Full Text
Peer Reviewed
See detailResolved astrometric orbits of ten O-type binaries
Le Bouquin, J.-B.; Sana, H.; Gosset, Eric ULiege et al

in Astronomy and Astrophysics (2017), 601

Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2 ... [more ▼]

Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms are at play. Finally, we found that the use of existing SB2 radial velocity amplitudes can lead to unrealistic masses and distances. If not understood, the biases in radial velocity amplitudes will represent an intrinsic limitation for estimating dynamical masses from SB2+interferometry or SB2+Gaia. Nevertheless, our results can be combined with future Gaia astrometry to measure the dynamical masses and distances of the individual components with an accuracy of 5 to 15\%, completely independently of the radial velocities. [less ▲]

Detailed reference viewed: 34 (9 ULiège)
Full Text
Peer Reviewed
See detailAn investigation into the fraction of particle accelerators among colliding-wind binaries. Towards an extension of the catalogue
De Becker, Michaël ULiege; Benaglia, Paula; Romero, Gustavo E. et al

in Astronomy and Astrophysics (2017), 600

Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact ... [more ▼]

Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact with different fields (magnetic or radiation) in the colliding-wind region and produce non-thermal emission. In many cases, non-thermal synchrotron radiation might be observable and thus constitute an indicator of the existence of a relativistic particle population in these multiple systems. To date, the catalogue of PACWBs includes about 40 objects spread over many stellar types and evolutionary stages, with no clear trend pointing to privileged subclasses of objects likely to accelerate particles. This paper aims at discussing critically some criteria for selecting new candidates among massive binaries. The subsequent search for non-thermal radiation in these objects is expected to lead to new detections of particle accelerators. On the basis of this discussion, some broad ideas for observation strategies are formulated. At this stage of the investigation of PACWBs, there is no clear reason to consider particle acceleration in massive binaries as an anomaly or even as a rare phenomenon. We therefore consider that several PACWBs will be detected in the forthcoming years, essentially using sensitive radio interferometers which are capable of measuring synchrotron emission from colliding-wind binaries. Prospects for high-energy detections are also briefly addressed. [less ▲]

Detailed reference viewed: 12 (3 ULiège)
Full Text
Peer Reviewed
See detailOn-sky performance of the QACITS pointing control technique with the Keck/NIRC2 vortex coronagraph
Huby, Elsa ULiege; Bottom, Michael; Femenia, Bruno et al

in Astronomy and Astrophysics (2017), 600

A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront ... [more ▼]

A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront incident on the phase mask. In particular, centering errors can lead to significant stellar light leakage that degrades the contrast performance and prevents the observation of faint planetary companions around the observed stars. It is thus critical to correct for the possible slow drift of the star image from the phase mask center, generally due to mechanical flexures induced by temperature and/or gravity field variation, or to misalignment between the optics that rotate in pupil tracking mode. A control loop based on the QACITS algorithm for the vortex coronagraph has thus been developed and deployed for the Keck/NIRC2 instrument. This algorithm executes the entire observing sequence, including the calibration steps, initial centering of the star on the vortex center and stabilisation during the acquisition of science frames. On-sky data show that the QACITS control loop stabilizes the position of the star image down to 2.4 mas rms at a frequency of about 0.02 Hz. However, the accuracy of the estimator is probably limited by a systematic error due to a misalignment of the Lyot stop with respect to the entrance pupil, estimated to be on the order of 4.5 mas. A method to reduce the amplitude of this bias down to 1 mas is proposed. The QACITS control loop has been successfully implemented and provides a robust method to center and stabilize the star image on the vortex mask. In addition, QACITS ensures a repeatable pointing quality and significantly improves the observing efficiency compared to manual operations. It is now routinely used for vortex coronagraph observations at Keck/NIRC2, providing contrast and angular resolution capabilities suited for exoplanet and disk imaging. [less ▲]

Detailed reference viewed: 48 (11 ULiège)
Full Text
Peer Reviewed
See detailStructure of Herbig AeBe disks at the milliarcsecond scale. A statistical survey in the H band using PIONIER-VLTI
Lazareff, B.; Berger, J.-P.; Kluska, J. et al

in Astronomy and Astrophysics (2017), 599

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical ... [more ▼]

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order one au, and the properties of the dust grains. Methods. The program objects (51 in total) were observed with the H-band (1.6micron) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results. We find that dust at the inner rim of the disk has a sublimation temperature Tsub~1800K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide delta_r>=0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with a the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r~0.2, flaring to z/r~0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class. [less ▲]

Detailed reference viewed: 23 (5 ULiège)
Full Text
Peer Reviewed
See detailReconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line
Bourrier, V.; Ehrenreich, D.; Wheatley, P. J. et al

in Astronomy and Astrophysics (2017), 599

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space ... [more ▼]

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets. [less ▲]

Detailed reference viewed: 26 (3 ULiège)
Full Text
Peer Reviewed
See detailEvolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5
Mahy, Laurent ULiege; Hutsemekers, Damien ULiege; Nazé, Yaël ULiege et al

in Astronomy and Astrophysics (2017), 599(A61), 17

<BR /> Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a ... [more ▼]

<BR /> Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. <BR /> Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. <BR /> Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile. [less ▲]

Detailed reference viewed: 18 (2 ULiège)
Full Text
Peer Reviewed
See detailConstraining the efficiency of angular momentum transport with asteroseismology of red giants: the effect of stellar mass
Eggenberger, P.; Lagarde, N.; Miglio, A. et al

in Astronomy and Astrophysics (2017), 599

Context: Constraints on the internal rotation of red giants are now available thanks to asteroseismic observations. Preliminary comparisons with rotating stellar models indicate that an undetermined ... [more ▼]

Context: Constraints on the internal rotation of red giants are now available thanks to asteroseismic observations. Preliminary comparisons with rotating stellar models indicate that an undetermined additional process for the internal transport of angular momentum is required in addition to purely hydrodynamic processes. Aims: We investigate how asteroseismic measurements of red giants can help us characterize the additional transport mechanism. Methods: We first determine the efficiency of the missing transport mechanism for the low-mass red giant KIC 7341231 by computing rotating models that include an additional viscosity corresponding to this process. We then discuss the change in the efficiency of this transport of angular momentum with the mass, metallicity and evolutionary stage. Results: In the case of the low-mass red giant KIC 7341231, we find that the viscosity corresponding to the additional mechanism is constrained to the range 1 x 10^3 - 1.3 x 10^4 cm^2/s. This constraint on the efficiency of the unknown additional transport mechanism during the post-main sequence is obtained independently of any specific assumption about the modelling of rotational effects during the pre-main sequence and the main sequence (in particular, the braking of the surface by magnetized winds and the efficiency of the internal transport of angular momentum before the post-main-sequence phase). When we assume that the additional transport mechanism is at work during the whole evolution of the star together with a solar-calibrated braking of the surface by magnetized winds, the range of nu_add is reduced to 1 - 4 x 10^3 cm^2/s. In addition to being sensitive to the evolutionary stage of the star, we show that the efficiency of the unknown process for internal transport of angular momentum increases with the stellar mass. [less ▲]

Detailed reference viewed: 28 (4 ULiège)
Full Text
Peer Reviewed
See detailVLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit
Wertz, Olivier; Absil, Olivier ULiege; Gómez González, Carlos ULiege et al

in Astronomy and Astrophysics (2017), 598

HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on ... [more ▼]

HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity ($e \simeq 0.35$), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond $e = 0.2$, and show a peak at $e \simeq 0.1$ for planet e. The four planets have consistent inclinations of about $30\deg$ with respect to the sky plane, but the confidence intervals for the longitude of ascending node are disjoint for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the $2 \sigma$ level. [less ▲]

Detailed reference viewed: 39 (8 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893
Milli, J.; Hibon, P.; Christiaens, Valentin ULiege et al

in Astronomy and Astrophysics (2017), 597

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition ... [more ▼]

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. <BR /> Methods: We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. <BR /> Results: We report the detection of a source with a contrast of 3.6 × 10[SUP]-5[/SUP] in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M[SUB]Jup[/SUB] for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. <BR /> Conclusions: The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions. [less ▲]

Detailed reference viewed: 48 (7 ULiège)
Full Text
Peer Reviewed
See detailFrom Dense Hot Jupiter to Low Density Neptune: The Discovery of WASP-127b, WASP-136b and WASP-138b
Lam, K. W. F.; Faedi, F.; Brown, D. J. A. et al

in Astronomy and Astrophysics (2017), 599

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered ... [more ▼]

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered by the WASP project. It orbits a bright host star (V = 10.16) of spectral type G5 with a period of 4.17 days.WASP-127b is a low density planet which has an extended atmosphere with a scale height of 2500+/-400 km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51 Mj and 1.38 Rj, and 1.22 Mj and 1.09 Rj, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41 Msun and a radius of 2.21 Rsun. The discovery of WASP-136b could help constraint the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of 10 Mearth. The discovery of these new planets helps in exploring the diverse compositional range of short-period planets, and will aid our understanding of the physical characteristics of both gas giants and low density planets. [less ▲]

Detailed reference viewed: 35 (7 ULiège)
Full Text
Peer Reviewed
See detailComplete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9-2854
Hoyer, D.; Rauch, T.; Werner, K. et al

in Astronomy and Astrophysics (2017), 598

Detailed reference viewed: 14 (2 ULiège)
Full Text
Peer Reviewed
See detailRadiative data for highly excited 3d84d levels in Ni II from laboratory measurements and atomic calculations
Hartman, H.; Engström, L.; Lundberg, H. et al

in Astronomy and Astrophysics (2017), 600

Detailed reference viewed: 13 (4 ULiège)
Full Text
Peer Reviewed
See detailA polarimetric investigation of Jupiter: Disk-resolved imaging polarimetry and spectropolarimetry
McLean, W.; Stam, D. M.; Bagnulo, S. et al

in Astronomy and Astrophysics (2017), 601

Context. Polarimetry is a powerful remote sensing tool to characterise solar system planets and, potentially, to detect and characterise exoplanets. The linear polarisation of a planet as a function of ... [more ▼]

Context. Polarimetry is a powerful remote sensing tool to characterise solar system planets and, potentially, to detect and characterise exoplanets. The linear polarisation of a planet as a function of wavelength and phase angle is sensitive to the cloud and haze particle properties in planetary atmospheres, as well as to their altitudes and optical thicknesses. Aims. We present for the first time polarimetric signals of Jupiter mapped over the entire disk, showing features such as contrasts between the belts and zones, the polar regions, and the Great Red Spot. We investigate the use of these maps for atmospheric characterisation and discuss the potential application of polarimetry to the study of the atmospheres of exoplanets. Methods. We have obtained polarimetric images of Jupiter, in the B, V, and R filters, over a phase angle range of α = 4°–10.5°. In addition, we have obtained two spectropolarimetric datasets, over the wavelength range 500–850 nm. An atmospheric model was sought for all of the datasets, which was consistent with the observed behaviour over the wavelength and phase angle range. Results. The polarimetric maps show clear latitudinal structure, with increasing polarisation towards the polar regions, in all filters. The spectropolarimetric datasets show a decrease in polarisation as a function of wavelength along with changes in the polarisation in methane absorption bands. A model fit was achieved by varying the cloud height and haze optical thickness; this can roughly produce the variation across latitude for the V and R filters, but not for the B filter data. The same model particles are also able to produce a close fit to the spectropolarimetric data. The atmosphere of Jupiter is known to be complex in structure, and data taken at intermediate phase angles (unreachable for Earth-based telescopes) seems essential for a complete characterisation of the atmospheric constituents. Because exoplanets orbit other stars, they are observable at intermediate phase angles and thus promise to be better targets for Earth-based polarimetry. [less ▲]

Detailed reference viewed: 17 (2 ULiège)