References of "von Clarmann, T"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTrends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data
Bernet, L.; Brockmann, E.; von Clarmann, T. et al

in Atmospheric Chemistry and Physics (2020), 20(19), 11223--11244

Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland ... [more ▼]

Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 % per decade to 5 % per decade,with deviating trends at some GNSS stations. Trends were significantly positive at 17 % of all GNSS stations, which of-ten lie at higher altitudes (between 850 and 1650 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in the whole of Switzerland is not clear everywhere. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the Jungfraujoch high-altitude station, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general,we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes [less ▲]

Detailed reference viewed: 25 (0 ULiège)
Full Text
Peer Reviewed
See detailImpacts of H2O variability on accuracy of CH4 observations from MIPAS satellite over tropics
Yirdaw Berhe, T.; Mengistu Tsidu, G.; Blumenstock, T. et al

E-print/Working paper (2019)

Uncertainties of tropical methane concentrations, retrieved from spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), MIPAS version V5R_CH4_220 are large. We explore ... [more ▼]

Uncertainties of tropical methane concentrations, retrieved from spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), MIPAS version V5R_CH4_220 are large. We explore the relation of these uncertainties with water vapour variability. We further show that these uncertainties have been reduced in MIPAS version V5R_CH4_224. Coincident measurements of CH4 by MIPAS, ground based FTIR and CH4 derived from EOS MLS coincident measurements of atmospheric water vapour (H2O), carbon monoxide (CO) and nitrous oxide (N2O) are used to estimate the standard uncertainty of MIPAS CH4 220, MIPAS CH4 224 and natural variability of H2O. Different methods such as bias evaluation, differential method and correlation coefficient are employed to explore the latitudinal variations of standard uncertainty of MIPAS CH4 220 and natural variability of water vapour as well as its reduction on MIPAS CH4 224. The averaged bias between MIPAS CH4 220 and ground-based FTIR measurements are −12.3 %, 8.4 % and 1.2 % for tropics, mid-latitudes and high latitudes, respectively. The standard deviations of the differences for these latitudinal bands are 5.9 %, 4.8 % and 4.7 %. More-over, the correlation coefficient between MIPAS CH4 220 and MIPAS V5R_N2O_220 is 0.32 in the upper troposphere and lower stratosphere over tropics and larger than the mod-est value 0.5 in mid and high latitudes. The poor correlation between MIPAS CH4 220 and MIPAS N2O 220 over tropics can indicate the large uncertainty of MIPAS CH4 220 over tropics that is related to water variability. Similarly, mean relative difference between MIPAS CH4 224 and ground-based FTIR measurements are 3.9 %, −2.6 % and −2.7 % in altitude 15–21 km and the average estimated uncertainty of MIPAS CH4 224 methane were obtained 2.4 %, 1.4 % and 5.1 % in altitude ranges of 15 to 27 km for tropics, mid and high latitudes, respectively. The estimated measurement uncertainty of MIPAS CH4 224 is different for the three latitude bands in the northern hemisphere, reflecting the latitudinal variation of uncertainties of MIPAS methane. However, the large reduction of uncertainty in MIPAS CH4 224 as compared to MIPAS CH4 220 has been confirmed for the tropical measurements. The correlation coefficients between the uncertainty of MIPAS CH4 220 and the variability of water vapour in lower stratosphere are strong (0.88) on monthly temporal scales. Similar methods were used for MIPAS CH4 224. It was found that the uncertainty in methane due to the variability of water vapor has been reduced. [less ▲]

Detailed reference viewed: 61 (8 ULiège)
Full Text
Peer Reviewed
See detailSPARC Report on the Mystery of Carbon Tetrachloride
Ahmadzai, H; Bock, R P; Burkholder, J B et al

in Liang, Qing; Newman, Paul A; Reimann, Stefan (Eds.) SPARC Report on the Mystery of Carbon Tetrachloride (2016)

The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for ... [more ▼]

The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for about 12% of the globally averaged inorganic chlorine and bromine in the stratosphere, compared to 14% for CFC-12 in 2012. In spite of the MP controls, there are large ongoing emissions of CCl4 into the atmosphere. Estimates of emissions from various techniques ought to yield similar numbers. However, the recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg/year (1-4 kilotonnes/year), based on country-by-country reports to UNEP, and a global top-down emissions estimate of 57 Gg/ year, based on atmospheric measurements. This 54 Gg/year difference has not been explained. In order to assess the current knowledge on global CCl4 sources and sinks, stakeholders from industrial, governmental, and the scientific communities came together at the “Solving the Mystery of Carbon Tetrachloride” workshop, which was held from 4-6 October 2015 at Empa in Dübendorf, Switzerland. During this workshop, several new findings were brought forward by the participants on CCl4 emissions and related science. • Anthropogenic production and consumption for feedstock and process agent uses (e.g., as approved solvents) are reported to UNEP under the MP. Based on these numbers, global bottom-up emissions of 3 (0-8) Gg/year are estimated for 2007-2013 in this report. This number is also reasonably consistent with this report’s new industry-based bottom-up estimate for fugitive emissions of 2 Gg/year. • By-product emissions from chloromethanes and perchloroethylene plants are newly proposed in this report as significant CCl4 sources, with global emissions estimated from these plants to be 13 Gg/year in 2014. • This report updates the anthropogenic CCl4 emissions estimation as a maximum of ~25 Gg/year. This number is derived by combining the above fugitive and by-product emissions (2 Gg/year and 13 Gg/year, respectively) with 10 Gg/year from legacy emissions plus potential unreported inadvertent emissions from other sources. • Ongoing atmospheric CCl4 measurements within global networks have been exploited for assessing regional emissions. In addition to existing emissions estimates from China and Australia, the workshop prompted research on emissions in the U.S. and Europe. The sum of these four regional emissions is estimated as 21±7.5a Gg/year, but this is not a complete global accounting. These regional top-down emissions estimates also show that most of the CCl4 emissions originate from chemical industrial regions, and are not linked to major population centres. • The total CCl4 lifetime is critical for calculating top-down global emissions. CCl4 is destroyed in the stratosphere, oceans, and soils, complicating the total lifetime estimate. The atmospheric lifetime with respect to stratospheric loss was recently revised to 44 (36-58) years, and remains unchanged in this report. New findings from additional measurement campaigns and reanalysis of physical parameters lead to changes in the ocean lifetime from 94 years to 210 (157-313) years, and in the soil lifetime from 195 years to 375 (288-536) years. • These revised lifetimes lead to an increase of the total lifetime from 26 years in WMO [2014] to 33 (28-41) years. Consequently, CCl4 is lost at a slower rate from the atmosphere. With this new total lifetime, the global top-down emissions calculation decreases from 57 (40-74) Gg/year in WMO [2014] to 40 (25-55) Gg/year. This estimate is relatively consistent with the independent gradient top-down emissions of 30 (25-35) Gg/year, based upon differences between atmospheric measurements of CCl4 in the Northern and Southern Hemispheres. In addition, this new total lifetime implies an upper limit of 3-4 Gg/year of natural emissions, based upon newly reported observations of old air in firn snow. These new CCl4 emissions estimates from the workshop make considerable progress toward closing the emissions discrepancy. The new industrial bottom-up emissions estimate (15 Gg/year total) includes emissions from chloromethanes plants (13 Gg/year) and feedstock fugitive emissions (2 Gg/year). When combined with legacy emissions and unreported inadvertent emissions, this could be up to 25 Gg/year. Top-down emissions estimates are: global 40 (25-55) Gg/year, gradient 30 (25-35) Gg/year, and regional 21 (14-28) Gg/year. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties. [less ▲]

Detailed reference viewed: 104 (9 ULiège)
Full Text
Peer Reviewed
See detailValidation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)
Dupuy, Eric; Walker, K. A.; Kar, J. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 287-343

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and ... [more ▼]

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements. [less ▲]

Detailed reference viewed: 258 (23 ULiège)
Full Text
Peer Reviewed
See detailMIPAS: an instrument for atmospheric and climate research
Fischer, H.; Birk, M.; Blom, C. et al

in Atmospheric Chemistry and Physics (2008), 8(8), 2151--2188

Detailed reference viewed: 8 (0 ULiège)