References of "Triaud, A. H. M. J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDiscovery of three new transiting hot Jupiters: WASP-161 b, WASP-163 b and WASP-170 b
Barkaoui, K.; Burdanov, Artem ULiege; Hellier, C. et al

in Astronomical Journal (2019), 157(2),

We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE ... [more ▼]

We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE spectrograph and high-precision transit light curves obtained with the TRAPPIST-North, TRAPPIST-South, SPECULOOS-South, NITES, and Euler telescopes have enabled us to determine the masses and radii for these transiting exoplanets. WASP-161\,b completes an orbit around its $V=11.1$ F6V-type host star in 5.406 days, and has a mass and radius of $2.5\pm 0.2$$M_{Jup}$ and $1.14\pm 0.06$ $R_{Jup}$ respectively. WASP-163\,b has an orbital period of 1.609 days, a mass of $1.9\pm0.2$ $M_{Jup}$, and a radius of $1.2\pm0.1$ $R_{Jup}$. Its host star is a $V=12.5$ G8-type dwarf. WASP-170\,b is on a 2.344 days orbit around a G1V-type star of magnitude $V=12.8$. It has a mass of $1.7\pm0.2$ $M_{Jup}$ and a radius of $1.14\pm0.09$ $R_{Jup}$. Given their irradiations ($\sim10^9$ erg.s$^{-1}$.cm$^{-2}$) and masses, the three new planets sizes are in good agreement with classical structure models of irradiated giant planets. [less ▲]

Detailed reference viewed: 31 (6 ULiège)
Full Text
Peer Reviewed
See detailNew transiting hot Jupiters discovered by WASP-South, Euler/CORALIE, and TRAPPIST-South
Hellier, Coel; Anderson, D. R.; Bouchy, F. et al

in Monthly Notices of the Royal Astronomical Society (2019), 482

We report the discovery of eight hot-Jupiter exoplanets from the WASP-South transit survey. WASP-144b has a mass of 0.44 M[SUB]Jup[/SUB], a radius of 0.85 R[SUB]Jup[/SUB], and is in a 2.27-d orbit around ... [more ▼]

We report the discovery of eight hot-Jupiter exoplanets from the WASP-South transit survey. WASP-144b has a mass of 0.44 M[SUB]Jup[/SUB], a radius of 0.85 R[SUB]Jup[/SUB], and is in a 2.27-d orbit around a V = 12.9, K2 star which shows a 21-d rotational modulation. WASP-145Ab is a 0.89 M[SUB]Jup[/SUB] planet in a 1.77-d orbit with a grazing transit. The host is a V = 11.5, K2 star with a companion 5 arcsec away and 1.4 mag fainter. WASP-158b is a relatively massive planet at 2.8 M[SUB]Jup[/SUB] with a radius of 1.1 R[SUB]Jup[/SUB] and a 3.66-d orbit. It transits a V = 12.1, F6 star. WASP-159b is a bloated hot Jupiter (1.4 R[SUB]Jup[/SUB] and 0.55 M[SUB]Jup[/SUB]) in a 3.8-d orbit around a V = 12.9, F9 star. WASP-162b is a massive planet in a relatively long and highly eccentric orbit (5.2 M[SUB]Jup[/SUB], P = 9.6 d, e = 0.43). It transits a V = 12.2, K0 star. WASP-168b is a bloated hot Jupiter (0.42 M[SUB]Jup[/SUB]; 1.5 R[SUB]Jup[/SUB]) in a 4.15-d orbit with a grazing transit. The host is a V = 12.1, F9 star. WASP-172b is a bloated hot Jupiter (0.5 M[SUB]Jup[/SUB]; 1.6 R[SUB]Jup[/SUB]) in a 5.48-d orbit around a V = 11.0, F1 star. WASP-173Ab is a massive planet (3.7 M[SUB]Jup[/SUB]) with a 1.2 R[SUB]Jup[/SUB] radius in a circular orbit with a period of 1.39 d. The host is a V = 11.3, G3 star, being the brighter component of the double-star system WDS23366 - 3437, with a companion 6 arcsec away and 0.8 mag fainter. One of the two stars shows a rotational modulation of 7.9 d. [less ▲]

Detailed reference viewed: 17 (1 ULiège)
Full Text
See detailThe discovery of WASP-134b, WASP-134c, WASP-137b, WASP-143b and WASP-146b: three hot Jupiters and a pair of warm Jupiters orbiting Solar-type stars
Anderson, D. R.; Bouchy, F.; Brown, D. J. A. et al

E-print/Working paper (2018)

We report the discovery by WASP of five planets orbiting moderately bright ($V$ = 11.0-12.9) Solar-type stars. WASP-137b, WASP-143b and WASP-146b are typical hot Jupiters in orbits of 3-4 d and with ... [more ▼]

We report the discovery by WASP of five planets orbiting moderately bright ($V$ = 11.0-12.9) Solar-type stars. WASP-137b, WASP-143b and WASP-146b are typical hot Jupiters in orbits of 3-4 d and with masses in the range 0.68--1.11 $M_{\rm Jup}$. WASP-134 is a metal-rich ([Fe/H] = +0.40 $\pm$ 0.07]) G4 star orbited by two warm Jupiters: WASP-134b ($M_{\rm pl}$ = 1.41 $M_{\rm Jup}$; $P = 10.1$ d; $e = 0.15 \pm 0.01$; $T_{\rm eql}$ = 950 K) and WASP-134c ($M_{\rm pl} \sin i$ = 0.70 $M_{\rm Jup}$; $P = 70.0$ d; $e = 0.17 \pm 0.09$; $T_{\rm eql}$ = 500 K). From observations of the Rossiter-McLaughlin effect of WASP-134b, we find its orbit to be misaligned with the spin of its star ($\lambda = -44 \pm 10^\circ$). WASP-134 is a rare example of a system with a short-period giant planet and a nearby giant companion. In-situ formation or disc migration seem more likely explanations for such systems than does high-eccentricity migration. [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
Peer Reviewed
See detailActivity induced variation in spin-orbit angles as derived from Rossiter-McLaughlin measurements
Oshagh, M.; Triaud, A. H. M. J.; Burdanov, Artem ULiege et al

in Astronomy and Astrophysics (2018), 619(150),

One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the Rossiter-McLaughlin (RM) effect. So ... [more ▼]

One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the Rossiter-McLaughlin (RM) effect. So far mostly single RM observations have been used to estimate the spin-orbit angle, and thus there have been no studies regarding the variation of estimated spin-orbit angle from transit to transit. Stellar activity can alter the shape of photometric transit light curves and in a similar way they can deform the RM signal. In this paper we discuss several RM observations, obtained using the HARPS spectrograph, of known transiting planets that all transit extremely active stars, and by analyzing them individually we assess the variation in the estimated spin-orbit angle. Our results reveal that the estimated spin-orbit angle can vary significantly (up to 42 degrees) from transit to transit, due to variation in the configuration of stellar active regions over different nights. This finding is almost two times larger than the expected variation predicted from simulations. We could not identify any meaningful correlation between the variation of estimated spin-orbit angles and the stellar magnetic activity indicators. We also investigated two possible approaches to mitigate the stellar activity influence on RM observations. The first strategy was based on obtaining several RM observations and folding them to reduce the stellar activity noise. Our results demonstrated that this is a feasible and robust way to overcome this issue. The second approach is based on acquiring simultaneous high-precision short-cadence photometric transit light curves using TRAPPIST/SPECULOOS telescopes, which provide more information about the stellar active region's properties and allow a better RM modeling. [less ▲]

Detailed reference viewed: 17 (1 ULiège)
Full Text
See detailWASP-166b: a bloated super-Neptune transiting a V = 9 star
Hellier, Coel; Anderson, D. R.; Triaud, A. H. M. J. et al

E-print/Working paper (2018)

We report the discovery of WASP-166b, a super-Neptune planet with a mass of 0.1 Mjup and a bloated radius of 0.63 Rjup. It transits a V = 9.36, F9V star in a 5.44-d orbit that is aligned with the stellar ... [more ▼]

We report the discovery of WASP-166b, a super-Neptune planet with a mass of 0.1 Mjup and a bloated radius of 0.63 Rjup. It transits a V = 9.36, F9V star in a 5.44-d orbit that is aligned with the stellar rotation (lambda = -3 +/- 5 degrees). WASP-166b appears to be a rare object within the `Neptune desert'. The planet's low surface gravity and bright host star make it a promising target for atmospheric characterisation. There are variations in the radial-velocity measurements that might result from stellar magnetic activity. [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
See detailWASP-190b: Tomographic discovery of a transiting hot Jupiter
Temple, L. Y.; Hellier, C.; Anderson, D. R. et al

E-print/Working paper (2018)

We report the discovery of WASP-190b, an exoplanet on a 5.37-day orbit around an inflated F6 IV-V star with T_eff = 6400 $\pm$ 100 K, M$_{*}$ = 1.35 $\pm$ 0.05 M_sun and R$_{*}$ = 1.6 $\pm$ 0.1 R_sun. The ... [more ▼]

We report the discovery of WASP-190b, an exoplanet on a 5.37-day orbit around an inflated F6 IV-V star with T_eff = 6400 $\pm$ 100 K, M$_{*}$ = 1.35 $\pm$ 0.05 M_sun and R$_{*}$ = 1.6 $\pm$ 0.1 R_sun. The planet has a radius of R_p = 1.15 $\pm$ 0.09 R_Jup and a mass of M_p = 1.0 $\pm$ 0.1 M_Jup, making it a mildly inflated hot Jupiter. The orbit is also marginally misaligned with respect to the stellar rotation, with $\lambda$ = 21 $\pm$ 6$^{\circ}$ measured using Doppler tomography. We compare a Rossiter-McLaughlin analysis (involving radial velocity measurements) with the Doppler tomography method, and find that the latter provides a better constraint on $vsini_{*}$ and $\lambda$. [less ▲]

Detailed reference viewed: 16 (2 ULiège)
Full Text
Peer Reviewed
See detailThe 0.8-4.5$\mu$m broadband transmission spectra of TRAPPIST-1 planets
Ducrot, Elsa ULiege; Sestovic, M.; Morris, B. M. et al

in Astronomical Journal (2018), 156

The TRAPPIST-1 planetary system represents an exceptional opportunity for the atmospheric characterization of temperate terrestrial exoplanets with the upcoming James Webb Space Telescope (JWST ... [more ▼]

The TRAPPIST-1 planetary system represents an exceptional opportunity for the atmospheric characterization of temperate terrestrial exoplanets with the upcoming James Webb Space Telescope (JWST). Assessing the potential impact of stellar contamination on the planets' transit transmission spectra is an essential precursor step to this characterization. Planetary transits themselves can be used to scan the stellar photosphere and to constrain its heterogeneity through transit depth variations in time and wavelength. In this context, we present our analysis of 169 transits observed in the optical from space with K2 and from the ground with the SPECULOOS and Liverpool telescopes. Combining our measured transit depths with literature results gathered in the mid/near-IR with Spitzer/IRAC and HST/WFC3, we construct the broadband transmission spectra of the TRAPPIST-1 planets over the 0.8-4.5 $\mu$m spectral range. While planets b, d, and f spectra show some structures at the 200-300ppm level, the four others are globally flat. Even if we cannot discard their instrumental origins, two scenarios seem to be favored by the data: a stellar photosphere dominated by a few high-latitude giant (cold) spots, or, alternatively, by a few small and hot (3500-4000K) faculae. In both cases, the stellar contamination of the transit transmission spectra is expected to be less dramatic than predicted in recent papers. Nevertheless, based on our results, stellar contamination can still be of comparable or greater order than planetary atmospheric signals at certain wavelengths. Understanding and correcting the effects of stellar heterogeneity therefore appears essential to prepare the exploration of TRAPPIST-1's with JWST. [less ▲]

Detailed reference viewed: 63 (21 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of WASP-174b: Doppler tomography of a near-grazing transit
Temple, L. Y.; Hellier, C.; Almleaky, Y. et al

in Monthly Notices of the Royal Astronomical Society (2018), 480

We report the discovery and tomographic detection of WASP-174b, a planet with a near-grazing transit on a 4.23-d orbit around a V= 11.9, F6V star with [Fe/H] = 0.09 ± 0.09. The planet is in a moderately ... [more ▼]

We report the discovery and tomographic detection of WASP-174b, a planet with a near-grazing transit on a 4.23-d orbit around a V= 11.9, F6V star with [Fe/H] = 0.09 ± 0.09. The planet is in a moderately misaligned orbit with a sky-projected spin-orbit angle of λ = 31° ± 1°. This is in agreement with the known tendency for orbits around hotter stars to be misaligned. Owing to the grazing transit, the planet's radius is uncertain with a possible range of 0.8-1.8 R[SUB]Jup[/SUB]. The planet's mass has an upper limit of 1.3 M[SUB]Jup[/SUB]. WASP-174 is the faintest hot-Jupiter system so far confirmed by tomographic means. [less ▲]

Detailed reference viewed: 25 (3 ULiège)
Full Text
Peer Reviewed
See detailWASP-147b, 160Bb, 164b and 165b: two hot Saturns and two Jupiters, including two planets with metal-rich hosts
Lendl, M.; Anderson, D. R.; Bonfanti, Andrea ULiege et al

in Monthly Notices of the Royal Astronomical Society (2018)

We report the discovery of four transiting hot Jupiters, WASP-147, WASP-160B, WASP-164 and WASP-165 from the WASP survey. WASP-147b is a near Saturn-mass (M[SUB]P[/SUB] = 0.28M[SUB]J[/SUB]) object with a ... [more ▼]

We report the discovery of four transiting hot Jupiters, WASP-147, WASP-160B, WASP-164 and WASP-165 from the WASP survey. WASP-147b is a near Saturn-mass (M[SUB]P[/SUB] = 0.28M[SUB]J[/SUB]) object with a radius of 1.11 R[SUB]J[/SUB] orbiting a G4 star with a period of 4.6 d. WASP-160Bb has a mass and radius (M[SUB]p[/SUB] = 0.28 M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.09 R[SUB]J[/SUB]) near-identical to WASP-147b, but is less irradiated, orbiting a metal-rich ([Fe/H][SUB]*[/SUB] = 0.27) K0 star with a period of 3.8 d. WASP-160B is part of a near equal-mass visual binary with an on-sky separation of 28.5 arcsec. WASP-164b is a more massive (M[SUB]P[/SUB] = 2.13 M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.13 R[SUB]J[/SUB]) hot Jupiter, orbiting a G2 star on a close-in (P = 1.8 d), but tidally stable orbit. WASP-165b is a classical (M[SUB]p[/SUB] = 0.66 M[SUB]J[/SUB], R[SUB]P[/SUB] = 1.26 R[SUB]J[/SUB]) hot Jupiter in a 3.5 d period orbit around a metal-rich ([Fe/H][SUB]*[/SUB] = 0.33) star. WASP-147b and WASP-160Bb are promising targets for atmospheric characterization through transmission spectroscopy, while WASP-164b presents a good target for emission spectroscopy. [less ▲]

Detailed reference viewed: 18 (3 ULiège)
Full Text
See detailWASP-189b: an ultra-hot Jupiter transiting the bright A star HR 5599 in a polar orbit
Anderson, D. R.; Temple, L. Y.; Nielsen, L. D. et al

E-print/Working paper (2018)

We report the discovery of WASP-189b: an ultra-hot Jupiter in a 2.72-d transiting orbit around the $V = 6.6$ A star WASP-189 (HR 5599). We detected periodic dimmings in the star's lightcurve, first with ... [more ▼]

We report the discovery of WASP-189b: an ultra-hot Jupiter in a 2.72-d transiting orbit around the $V = 6.6$ A star WASP-189 (HR 5599). We detected periodic dimmings in the star's lightcurve, first with the WASP-South survey facility then with the TRAPPIST-South telescope. We confirmed that a planet is the cause of those dimmings via line-profile tomography and radial-velocity measurements using the HARPS and CORALIE spectrographs. Those reveal WASP-189b to be an ultra-hot Jupiter ($M_{\rm P}$ = 2.13 $\pm$ 0.28 $M_{\rm Jup}$; $R_{\rm P}$ = 1.374 $\pm$ 0.082 $R_{\rm Jup}$) in a polar orbit ($\lambda = 89.3 \pm 1.4^\circ$; $\Psi = 90.0 \pm 5.8^\circ$) around a rapidly rotating A6IV-V star ($T_{\rm eff}$ = 8000 $\pm$ 100 K; $v_* \sin i_*$ $\approx$ 100 km\, s$^{-1}$). We calculate a predicted equilibrium temperature of $T_{\rm eql}$ = 2641 $\pm$ 34 K, assuming zero albedo and efficient redistribution, which is the third hottest for the known exoplanets. WASP-189 is the brightest known host of a transiting hot Jupiter and the third-brightest known host of any transiting exoplanet. We note that of the eight hot-Jupiter systems with $T_{\rm eff}$ $>$ 7000 K, seven have strongly misaligned orbits, and two of the three systems with $T_{\rm eff}$ $\geq$ 8000 K have polar orbits (the third is aligned). [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
See detailA low-density hot Jupiter in a near-aligned, 4.5-day orbit around a $V$ = 10.8, F5V star
Anderson, D. R.; Bouchy, F.; Brown, D. J. A. et al

E-print/Working paper (2018)

We report the independent discovery and characterisation of a hot Jupiter in a 4.5-d, transiting orbit around the star TYC 7282-1298-1 ($V$ = 10.8, F5V). The planet has been pursued by the NGTS team as ... [more ▼]

We report the independent discovery and characterisation of a hot Jupiter in a 4.5-d, transiting orbit around the star TYC 7282-1298-1 ($V$ = 10.8, F5V). The planet has been pursued by the NGTS team as NGTS-2b and by ourselves as WASP-179b. We characterised the system using a combination of photometry from WASP-South and TRAPPIST-South, and spectra from CORALIE (around the orbit) and HARPS (through the transit). We find the planet's orbit to be nearly aligned with its star's spin. From a detection of the Rossiter-McLaughlin effect, we measure a projected stellar obliquity of $\lambda = -19 \pm 6^\circ$. From line-profile tomography of the same spectra, we measure $\lambda = -11 \pm 5^\circ$. We find the planet to have a low density ($M_{\rm P}$ = 0.67 $\pm$ 0.09 $M_{\rm Jup}$, $R_{\rm P}$ = 1.54 $\pm$ 0.06 $R_{\rm Jup}$), which, along with its moderately bright host star, makes it a good target for transmission spectroscopy. We find a lower stellar mass ($M_*$ = $1.30 \pm 0.07$ $M_\odot$) than reported by the NGTS team ($M_*$ = $1.64 \pm 0.21$ $M_\odot$), though the difference is only $1.5$ $\sigma$. [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
Peer Reviewed
See detailEarly 2017 observations of TRAPPIST-1 with Spitzer
Delrez, L.; Gillon, Michaël ULiege; Triaud, A. H. M. J. et al

in Monthly Notices of the Royal Astronomical Society (2018), 475(3), 3577-3597

The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth ... [more ▼]

The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μmband, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope. © 2018 The Author(s). [less ▲]

Detailed reference viewed: 81 (5 ULiège)
Full Text
Peer Reviewed
See detailThe nature of the TRAPPIST-1 exoplanets
Grimm, S. L.; Demory, B.-O.; Gillon, Michaël ULiege et al

in Astronomy and Astrophysics (2018), 613

Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of ... [more ▼]

Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planet's masses. Aims. The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTVs). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. Methods. To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. Results. Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1 c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%. © ESO 2018. [less ▲]

Detailed reference viewed: 38 (8 ULiège)
Full Text
Peer Reviewed
See detailAtmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1
De Wit, J.; Wakeford, H. R.; Lewis, N. K. et al

in Nature Astronomy (2018), 2(3), 214-219

Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2 ). Their atmospheric regime is unknown and could range from ... [more ▼]

Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2 ). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres 3-6 . Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones 6-8 . An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures 9 . However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere 10, 11 . Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface 12-14 . These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation 15, 16, these observations further support their terrestrial and potentially habitable nature. © 2018 The Author(s). [less ▲]

Detailed reference viewed: 37 (1 ULiège)
Full Text
Peer Reviewed
See detailThe discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert
Demangeon, O. D. S.; Faedi, F.; Hébrard, G. et al

in Astronomy and Astrophysics (2018), 610

To investigate the origin of the features discovered in the exoplanet population, the knowledge of exoplanets' mass and radius with a good precision (10%) is essential. To achieve this purpose the ... [more ▼]

To investigate the origin of the features discovered in the exoplanet population, the knowledge of exoplanets' mass and radius with a good precision (10%) is essential. To achieve this purpose the discovery of transiting exoplanets around bright stars is of prime interest. In this paper, we report the discovery of three transiting exoplanets by the SuperWASP survey and the SOPHIE spectrograph with mass and radius determined with a precision better than 15%. WASP-151b and WASP-153b are two hot Saturns with masses, radii, densities and equilibrium temperatures of 0.31-0.03 +0.04 MJ, 1.13-0.03 +0.03 RJ, 0.22-0.02 +0.03 ρJ and 1290-10 +20 K, and 0.39-0.02 +0.02 MJ, 1.55-0.08 +0.10 RJ, 0.11-0.02 +0.02 ρJ and 1700-40 +40 K, respectively. Their host stars are early G type stars (with mag V ~ 13) and their orbital periods are 4.53 and 3.33 days, respectively. WASP-156b is a super-Neptune orbiting a K type star (mag V = 11.6). It has a mass of 0.128-0.009 +0.010 MJ, a radius of 0.51-0.02 +0.02 RJ, a density of 1.0-0.1 +0.1 ρJ, an equilibrium temperature of 970-20 +30 K and an orbital period of 3.83 days. The radius of WASP-151b appears to be only slightly inflated, while WASP-153b presents a significant radius anomaly compared to a recently published model. WASP-156b, being one of the few well characterized super-Neptunes, will help to constrain the still debated formation of Neptune size planets and the transition between gas and ice giants. The estimates of the age of these three stars confirms an already observed tendency for some stars to have gyrochronological ages significantly lower than their isochronal ages. We propose that high eccentricity migration could partially explain this behavior for stars hosting a short period planet. Finally, these three planets also lie close to (WASP-151b and WASP-153b) or below (WASP-156b) the upper boundary of the Neptunian desert. Their characteristics support that the ultra-violet irradiation plays an important role in this depletion of planets observed in the exoplanet population. © 2018 ESO. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailSPECULOOS: A network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs
Delrez, L.; Gillon, Michaël ULiege; Queloz, D. et al

in Proceedings of SPIE: The International Society for Optical Engineering (2018), 10700

We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ∼1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared ... [more ▼]

We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ∼1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared (K-mag ≤ 12.5) to possibly enable the atmospheric characterization of temperate terrestrial planets with next-generation facilities like the James Webb Space Telescope. The ultimate goals of the project are to reveal the frequency of temperate terrestrial planets around the lowest-mass stars and brown dwarfs, to probe the diversity of their bulk compositions, atmospheres and surface conditions, and to assess their potential habitability. © 2018 SPIE. [less ▲]

Detailed reference viewed: 34 (0 ULiège)
Full Text
Peer Reviewed
See detailHigh-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanetWASP-103 b
Delrez, L.; Madhusudhan, N.; Lendl, M. et al

in Monthly Notices of the Royal Astronomical Society (2018), 474(2), 2334-2351

We present 16 occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103b, in addition to five new radial velocity measurements. We combine these observations with archival ... [more ▼]

We present 16 occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103b, in addition to five new radial velocity measurements. We combine these observations with archival data and perform a global analysis of the resulting extensive data set, accounting for the contamination from a nearby star. We detect the thermal emission of the planet in both the z' and KS bands, the measured occultation depths being 699±110 ppm (6.4σ) and 3567-350 +400 ppm (10.2σ), respectively. We use these two measurements, together with recently published HST/WFC3 data, to derive joint constraints on the properties of WASP- 103b's dayside atmosphere. On one hand, we find that the z' band and WFC3 data are best fit by an isothermal atmosphere at 2900K or an atmosphere with a low H2O abundance. On the other hand, we find an unexpected excess in the KS band measured flux compared to these models, which requires confirmation with additional observations before any interpretation can be given. From our global data analysis, we also derive a broad-band optical transmission spectrum that shows a minimum around 700 nm and increasing values towards both shorter and longer wavelengths. This is in agreement with a previous study based on a large fraction of the archival transit light curves used in our analysis. The unusual profile of this transmission spectrum is poorly matched by theoretical spectra and is not confirmed by more recent observations at higher spectral resolution. Additional data, in both emission and transmission, are required to better constrain the atmospheric properties of WASP-103b. © 2017 The Author(s). [less ▲]

Detailed reference viewed: 29 (1 ULiège)
Full Text
Peer Reviewed
See detailHigh-precision multi-wavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b
Delrez, L.; Madhusudhan, N.; Lendl, M. et al

in Monthly Notices of the Royal Astronomical Society (2017), 474(2), 2334-2351

We present sixteen occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103 b, in addition to five new radial velocity measurements. We combine these observations with ... [more ▼]

We present sixteen occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103 b, in addition to five new radial velocity measurements. We combine these observations with archival data and perform a global analysis of the resulting extensive dataset, accounting for the contamination from a nearby star. We detect the thermal emission of the planet in both the $z'$ and $K_{\mathrm{S}}$-bands, the measured occultation depths being 699$\pm$110 ppm (6.4-$\sigma$) and $3567_{-350}^{+400}$ ppm (10.2-$\sigma$), respectively. We use these two measurements together with recently published HST/WFC3 data to derive joint constraints on the properties of WASP-103 b's dayside atmosphere. On one hand, we find that the $z'$-band and WFC3 data are best fit by an isothermal atmosphere at 2900 K or an atmosphere with a low H$_2$O abundance. On the other hand, we find an unexpected excess in the $K_{\mathrm{S}}$-band measured flux compared to these models, which requires confirmation with additional observations before any interpretation can be given. From our global data analysis, we also derive a broad-band optical transmission spectrum that shows a minimum around 700 nm and increasing values towards both shorter and longer wavelengths. This is in agreement with a previous study based on a large fraction of the archival transit light curves used in our analysis. The unusual profile of this transmission spectrum is poorly matched by theoretical spectra and is not confirmed by more recent observations at higher spectral resolution. Additional data, both in emission and transmission, are required to better constrain the atmospheric properties of WASP-103 b. [less ▲]

Detailed reference viewed: 28 (2 ULiège)
Full Text
Peer Reviewed
See detailTemporal Evolution of the High-energy Irradiation and Water Content of TRAPPIST-1 Exoplanets
Bourrier, V.; de Wit, J.; Bolmont, E. et al

in Astronomical Journal (2017), 154

The ultracool dwarf star TRAPPIST-1 hosts seven Earth-size transiting planets, some of which could harbor liquid water on their surfaces. Ultraviolet observations are essential to measuring their high ... [more ▼]

The ultracool dwarf star TRAPPIST-1 hosts seven Earth-size transiting planets, some of which could harbor liquid water on their surfaces. Ultraviolet observations are essential to measuring their high-energy irradiation and searching for photodissociated water escaping from their putative atmospheres. Our new observations of the TRAPPIST-1 Lyα line during the transit of TRAPPIST-1c show an evolution of the star emission over three months, preventing us from assessing the presence of an extended hydrogen exosphere. Based on the current knowledge of the stellar irradiation, we investigated the likely history of water loss in the system. Planets b to d might still be in a runaway phase, and planets within the orbit of TRAPPIST-1g could have lost more than 20 Earth oceans after 8 Gyr of hydrodynamic escape. However, TRAPPIST-1e to h might have lost less than three Earth oceans if hydrodynamic escape stopped once they entered the habitable zone (HZ). We caution that these estimates remain limited by the large uncertainty on the planet masses. They likely represent upper limits on the actual water loss because our assumptions maximize the X-rays to ultraviolet-driven escape, while photodissociation in the upper atmospheres should be the limiting process. Late-stage outgassing could also have contributed significant amounts of water for the outer, more massive planets after they entered the HZ. While our results suggest that the outer planets are the best candidates to search for water with the JWST, they also highlight the need for theoretical studies and complementary observations in all wavelength domains to determine the nature of the TRAPPIST-1 planets and their potential habitability. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailThe discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants
Anderson, D. R.; Collier Cameron, A.; Delrez, L. et al

in Astronomy and Astrophysics (2017), 604

We report the discoveries of three transiting exoplanets. WASP-91b is a warm Jupiter (1.34 M[SUB]Jup[/SUB], 1.03 R[SUB]Jup[/SUB]) in a 2.8-day orbit around a metal-rich K3 star. WASP-105b is a warm ... [more ▼]

We report the discoveries of three transiting exoplanets. WASP-91b is a warm Jupiter (1.34 M[SUB]Jup[/SUB], 1.03 R[SUB]Jup[/SUB]) in a 2.8-day orbit around a metal-rich K3 star. WASP-105b is a warm Jupiter (1.8 M[SUB]Jup[/SUB], 0.96 R[SUB]Jup[/SUB]) in a 7.9-day orbit around a metal-rich K2 star. WASP-107b is a warm super-Neptune/sub-Saturn (0.12 M[SUB]Jup[/SUB], 0.94 R[SUB]Jup[/SUB]) in a 5.7-day orbit around a solar-metallicity K6 star. Considering that giant planets seem to be more common around stars of higher metallicity and stars of higher mass, it is notable that the hosts are all metal-rich, late-type stars. With orbital separations that place both WASP-105b and WASP-107b in the weak-tide regime, measurements of the alignment between the planets' orbital axes and their stars' spin axes may help us to understand the inward migration of short-period, giant planets. The mass of WASP-107b (2.2 M[SUB]Nep[/SUB], 0.40 M[SUB]Sat[/SUB]) places it in the transition region between the ice giants and gas giants of the Solar System. Its radius of 0.94 R[SUB]Jup[/SUB] suggests that it is a low-mass gas giant with a H/He-dominated composition. The planet thus sets a lower limit of 2.2 M[SUB]Nep[/SUB] on the planetary mass above which large gaseous envelopes can be accreted and retained by proto-planets on their way to becoming gas giants. We may discover whether WASP-107b more closely resembles an ice giant or a gas giant by measuring its atmospheric metallicity via transmission spectroscopy, for which WASP-107b is a very good target. Based on observations made with: the WASP-South photometric survey instrument, the 0.6-m TRAPPIST robotic imager, and the EulerCam camera and the CORALIE spectrograph mounted on the 1.2-m Euler-Swiss telescope.The photometric time-series and radial-velocity data used in this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A110">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A110</A> [less ▲]

Detailed reference viewed: 38 (1 ULiège)