References of "Tamooh, F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Marwick, T. R.; Tamooh, F.; Ogwoka, B. et al

in Biogeosciences (2018), 15(6), 1683--1700

Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the ... [more ▼]

Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the appropriation of land and water resources, are undoubtedly modulating the flux of carbon (C), nitrogen (N) and phosphorus (P) between terrestrial biomes to inland waters, and the subsequent flux of these nutrients to the marine and atmospheric domains. Here, we present a 2-year biogeochemical record (October 2011–December 2013) at biweekly sampling resolution for the lower Sabaki River, Kenya, and provide estimates for suspended sediment and nutrient export fluxes from the lower Sabaki River under pre-dam conditions, and in light of the approved construction of the Thwake Multipurpose Dam on its upper reaches (Athi River). Erratic seasonal variation was typical for most parameters, with generally poor correlation between discharge and material concentrations, and stable isotope values of C (δ13C) and N (δ15N). Although high total suspended matter (TSM) concentrations are reported here (up to ∼ 3.8 g L−1), peak concentrations of TSM rarely coincided with peak discharge. The contribution of particulate organic C (POC) to the TSM pool indicates a wide biannual variation in suspended sediment load from OC poor (0.3 %) to OC rich (14.9 %), with the highest %POC occurring when discharge is < 100 m3 s−1 and at lower TSM concentrations. The consistent 15N enrichment of the particulate nitrogen (PN) pool compared to other river systems indicates anthropogenic N loading is a year-round driver of N export from the Sabaki Basin. The lower Sabaki River was consistently oversaturated in dissolved methane (CH4; from 499 to 135 111 %) and nitrous oxide (N2O; 100 to 463 %) relative to atmospheric concentrations. Wet season flows (October–December and March–May) carried > 80 % of the total load for TSM (∼ 86 %), POC (∼ 89 %), dissolved organic carbon (DOC; ∼ 81 %), PN (∼ 89 %) and particulate phosphorus (TPP; ∼ 82 %), with > 50 % of each fraction exported during the long wet season (March–May). Our estimated sediment yield (85 Mg km−2 yr−1) is relatively low on the global scale and is considerably less than the recently reported average sediment yield of ∼ 630 Mg km−2 yr−1 for African river basins. Regardless, sediment and OC yields were all at least equivalent or greater than reported yields for the neighbouring dammed Tana River. Rapid pulses of heavily 13C-enriched POC coincided with peak concentrations of PN, ammonium, CH4 and low dissolved oxygen saturation, suggesting that large mammalian herbivores (e.g. hippopotami) may mediate the delivery of C4 organic matter to the river during the dry season. Given recent projections for increasing dissolved nutrient export from African rivers, as well as the planned damming of the Athi River, these first estimates of material fluxes from the Sabaki River provide base-line data for future research initiatives assessing anthropogenic perturbation of the Sabaki Basin. [less ▲]

Detailed reference viewed: 67 (4 ULiège)
Full Text
Peer Reviewed
See detailSeasonal and inter-annual variations in carbon fluxes in a tropical river system (Tana River, Kenya)
Geeraert, N; Omengo, FO; Tamooh, F et al

in Aquatic Sciences (2018), 80:19

The hydrological status of river systems is expected to change due to dam operations and climate change. This will affect the riverine fluxes of sediment and carbon (C). In rivers with strong seasonal and ... [more ▼]

The hydrological status of river systems is expected to change due to dam operations and climate change. This will affect the riverine fluxes of sediment and carbon (C). In rivers with strong seasonal and inter-annual variability, quantification and extrapolation of sediment and C fluxes can be a challenge as measurement periods are often too short to cover all hydrological conditions. We studied the dynamics of the Tana River (Kenya) from 2012 to 2014 through daily monitoring of sediment concentrations at three sites (Garissa, Tana River Primate Reserve and Garsen) and daily monitoring of C concentrations in Garissa and Garsen during three distinct seasons. A bootstrap method was applied to calculate the range of sediment and C fluxes as a function of annual discharge by using daily discharge data (1942–2014). Overall, we estimated that on average, sediment and carbon were retained in this 600 km long river section between Garissa to Garsen over the 73 years (i.e., fluxes were higher at the upstream site than downstream): integration over all simulations resulted in an average net retention of sediment (~ 2.9 Mt year− 1), POC (~ 18,000 tC year− 1), DOC (~ 920 tC year− 1) and DIC (~ 1200 tC year− 1). To assess the impact of hydrological variations, we constructed four different hydrological scenarios over the same period. Although there was significant non-linearity and difference between the C species, our estimates generally predicted a net increase of C retention between the upstream and downstream site when the annual discharge would decrease, for example caused by an increase of irrigation with reservoir water. When simulating an increase in the annual discharge, e.g. as a potential effect of climate change, we predicted a decrease in C retention. [less ▲]

Detailed reference viewed: 24 (5 ULiège)
Full Text
Peer Reviewed
See detailTechnical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters
Abril, Gwenael; Bouillon, Steven; Darchambeau, François ULiege et al

in Biogeosciences (2015), 12(1), 67-78

Detailed reference viewed: 49 (4 ULiège)
Full Text
See detailThe age of river-transported carbon: new data from African catchments and a global perspective
Marwick, TR; Tamooh, F; Teodoru, C et al

Conference (2014, April 27)

Detailed reference viewed: 18 (1 ULiège)
Full Text
Peer Reviewed
See detailDynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi–Galana–Sabaki River, Kenya
Marwick, T. R.; Tamooh, F.; Ogwoka, B. et al

in Biogeosciences (2014), 11(2), 443--460

Detailed reference viewed: 27 (1 ULiège)
Full Text
See detailThe age of river-transported carbon: new data from African catchments and a global perspective
Marwick, TR; Tamooh, F; Teodoru, CR et al

Conference (2014)

Detailed reference viewed: 19 (0 ULiège)
Full Text
See detailRiverine fluxes of sediments and carbon in the lower Tana River: the importance of floodplain retention
Tamooh, F.; Meysman, F.J.R.; Borges, Alberto ULiege et al

Conference (2014)

Detailed reference viewed: 21 (0 ULiège)
Full Text
Peer Reviewed
See detailDynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya
Tamooh, F.; Borges, Alberto ULiege; Meysman, F. J. R. et al

in Biogeosciences (2013), 10(11), 6911-6928

A basin-wide study was conducted in the Tana River basin (Kenya) in February 2008 (dry season), September–November 2009 (wet season) and June– July 2010 (end of the wet season) to assess the dynamics and ... [more ▼]

A basin-wide study was conducted in the Tana River basin (Kenya) in February 2008 (dry season), September–November 2009 (wet season) and June– July 2010 (end of the wet season) to assess the dynamics and sources of dissolved inorganic carbon (DIC) as well as to quantify CO2 fluxes, community respiration (R), and primary production (P). Samples were collected along the altitudinal gradient (from 3600 to 8 m) in several headwater streams, reservoirs (Kamburu and Masinga), and the Tana River mainstream. DIC concentrations ranged from 0.2 to 4.8 mmol L−1, with exceptionally high values (3.5±1.6 mmol L−1) in Nyambene Hills tributaries. The wide range of 13CDIC values (−15.0 to −2.4 ‰) indicate variable sources of DIC, with headwater streams recording more positive signatures compared to the Tana River mainstream. With with only a few exceptions, the entire riverine network was supersaturated in CO2, implying the system is a net source of CO2 to the atmosphere. pCO2 values were generally higher in the lower Tana River mainstream compared to headwater tributaries, opposite to the pattern typically observed in other river networks. This was attributed to high suspended sediment in the Tana River mainstream fuelling in-stream community respiration and net heterotrophy. This was particularly evident during the 2009 wet season campaign (median pCO2 of 1432 ppm) compared to the 2010 end of the wet season (1002 ppm) and 2008 dry season(579 ppm). First-order estimates show that in-stream community respiration was responsible for the bulk of total CO2 evasion (77 to 114 %) in the Tana River mainstream, while in the tributaries, this could only account for 5 to 68% of total CO2 evasion. This suggests that CO2 evasion in the tributaries was to a substantial degree sustained by benthic mineralisation and/or lateral inputs of CO2-oversaturated groundwater. While sediment loads increased downstream and thus light availability decreased in the water column, both chlorophyll a (0.2 to 9.6 μg L−1) and primary production (0.004 to 7.38 μmol CL−1 h−1) increased consistently downstream. Diurnal fluctuations of biogeochemical processes were examined at three different sites along the river continuum (headwater, reservoir and mainstream), and were found to be substantial only in the headwater stream, moderate in the reservoir and not detectable in the Tana River mainstream. The pronounced diurnal fluctuations observed in the headwater stream were largely regulated by periphyton as deduced from the low chlorophyll a in the water column. [less ▲]

Detailed reference viewed: 36 (9 ULiège)
Full Text
See detailSeasonal dynamics of organic carbon in the Tana River Basin, Kenya
Tamooh, F.; Meysman, F.; Marwick, T.R. et al

Conference (2012, April 22)

Detailed reference viewed: 10 (0 ULiège)
Full Text
Peer Reviewed
See detailDistribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya
Tamooh, F; Van den Meersche, K; Meysman, F et al

in Biogeosciences (2012), 9

We studied patterns in organic carbon pools and their origin in the Tana River Basin (Kenya), in February 2008 (dry season), September–November 2009 (wet season), and June–July 2010 (end of wet season ... [more ▼]

We studied patterns in organic carbon pools and their origin in the Tana River Basin (Kenya), in February 2008 (dry season), September–November 2009 (wet season), and June–July 2010 (end of wet season), covering the full continuum from headwater streams to lowland mainstream sites. A consistent downstream increase in total suspended matter (TSM, 0.6 to 7058 mg l−1) and particulate organic carbon (POC, 0.23 to 119.8 mg l−1) was observed during all three sampling campaigns, particularly pronounced below 1000m above sea level, indicating that most particulate matter exported towards the coastal zone originated from the mid and low altitude zones rather than from headwater regions. This indicates that the cascade of hydroelectrical reservoirs act as an extremely efficient particle trap. Although 7Be / 210Pbxs ratios/age of suspended sediment do not show clear seasonal variation, the gradual downstream increase of suspended matter during end of wet season suggests its origin is caused by inputs of older sediments from bank erosion and/or river sediment resuspension. During wet season, higher TSM concentrations correspond with relatively young suspended matter, suggesting a contribution from recently eroded material.With the exception of reservoir waters, POC was predominantly of terrestrial origin as indicated by generally high POC : chlorophyll a (POC : Chl a) ratios (up to 41 000). Stable isotope signatures of POC ( 13CPOC) ranged between −32 and −20‰and increased downstream, reflecting an increasing contribution of C4-derived carbon in combination with an expected shift in 13C for C3 vegetation towards the more semi-arid lowlands. 13C values in sediments from the main reservoir (−19.5 to −15.7 ‰) were higher than those found in any of the riverine samples, indicating selective retention of particles associated with C4 fraction. Dissolved organic carbon (DOC) concentrations were highest during the end of wet season (2.1 to 6.9 mg l−1), with stable isotope signatures generally between −28 and −22 ‰. A consistent downstream decrease in % organic carbon (%OC) was observed for soils, riverine sediments, and suspended matter. This was likely due to better preservation of the organic fraction in colder high altitude regions, with loss of carbon during downstream spiraling. 13C values for soil and sediment did not exhibit clear altitudinal patterns, but values reflect the full spectrum from C3-dominated to C4-dominated sites. Very low ratios of organic carbon to mineral surface area (OC : SA) were found in reservoir sediments and suspended matter in the lower Tana River, indicating that these are stable OC pools which have undergone extensive degradation. Overall, our study demonstrates that substantial differences occur in both the quantities and origin of suspended sediments and organic carbon along the river profile in this tropical river basin, as well as seasonal differences in the mechanisms causing such variations. [less ▲]

Detailed reference viewed: 32 (2 ULiège)
See detailDistribution and composition of organic carbon in the Tana River Basin, (Kenya)
Tamooh, F.; van den Meersche, K.; Borges, Alberto ULiege et al

Conference (2011, February 13)

Detailed reference viewed: 9 (0 ULiège)
See detailDistribution and composition of organic carbon in the Tana River Basin, (Kenya)
Tamooh, F.; van den Meersche, K.; Borges, Alberto ULiege et al

Poster (2011)

Detailed reference viewed: 38 (1 ULiège)
See detailIsotopic Composition and sources of Organic Carbon Pools within the Tana River Basin, (Kenya)
Tamooh, F.; Van Den Meersche, K.; Borges, Alberto ULiege et al

Poster (2011)

Detailed reference viewed: 22 (1 ULiège)
Full Text
See detailInorganic carbon in the Tana River Basin (Kenya): Distribution, composition and process rates
Van den Meersche, K.; Tamooh, F.; Meysman, F. et al

Conference (2011)

Detailed reference viewed: 12 (1 ULiège)