References of "Tallon, M"
     in
Bookmark and Share    
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailStructure of Herbig AeBe disks at the milliarcsecond scale. A statistical survey in the H band using PIONIER-VLTI
Lazareff, B.; Berger, J.-P.; Kluska, J. et al

in Astronomy and Astrophysics (2017), 599

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical ... [more ▼]

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order one au, and the properties of the dust grains. Methods. The program objects (51 in total) were observed with the H-band (1.6micron) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results. We find that dust at the inner rim of the disk has a sublimation temperature Tsub~1800K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide delta_r>=0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with a the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r~0.2, flaring to z/r~0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class. [less ▲]

Detailed reference viewed: 31 (7 ULiège)