References of "Stevens, M. H"
     in
Bookmark and Share    
See detailMAVEN IUVS Remote Sensing Highlights Relevant to Upcoming TGO Observations
Chaffin, M.; Schneider, N. M.; Deighan, J. et al

in From Mars Express to ExoMars (2018, February 01)

Not Available

Detailed reference viewed: 14 (2 ULiège)
See detailUnveiling Mars nightside mesosphere dynamics by IUVS/MAVEN global images of NO nightglow
Stiepen, Arnaud ULiege; Jain, S. K.; Schneider, N. M. et al

Conference (2017, September 01)

We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the ... [more ▼]

We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft. The seasonal dynamics of the Martian thermosphere-mesosphere can be constrained based on the distribution of these emissions. We show evidence for local (emission streaks and splotches) and global (longitudinal and seasonal) variability in brightness of the emission and provide quantitative comparisons to GCM simulations. [less ▲]

Detailed reference viewed: 9 (0 ULiège)
See detailMAVEN IUVS Observations of the Aftermath of the Comet Siding Spring Meteor Shower on Mars
Schneider, N. M.; Crismani, M.; Deighan, J. I. et al

Conference (2017, September 01)

A comet's close passage by Mars deposited an unprecedented amount of vaporized dust whose elements were detected by the MAVEN spacecraft.

Detailed reference viewed: 17 (0 ULiège)
See detailTwilight Limb Observations of Aerosols in the Martian Atmosphere by MAVEN IUVS
Lo, D. Y.; Yelle, R. V.; Schneider, N. M. et al

in Lunar and Planetary Science Conference (2016, March 01)

We make use of a single-scattering model to investigate aerosol scattering of sunlight observed by MAVEN IUVS in the nightside atmospheric limb.

Detailed reference viewed: 9 (1 ULiège)
See detailTwo Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph
Schneider, Nicholas M.; Deighan, J.; Jain, S. K. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2015, November 01)

The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning ... [more ▼]

The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars’ northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth.Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the diffuse aurora, indicating different excitation and quenching processes.We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high-energy deposition into Mars' atmopshere. [less ▲]

Detailed reference viewed: 6 (2 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of diffuse aurora on Mars
Schneider, N. M.; Deighan, J. I.; Jain, S. K. et al

in Science (2015), 350(6261),

Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment.We report the discovery of low-Altitude, diffuse auroras spanning much of Mars' northern ... [more ▼]

Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment.We report the discovery of low-Altitude, diffuse auroras spanning much of Mars' northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo-electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth. [less ▲]

Detailed reference viewed: 24 (3 ULiège)
Full Text
Peer Reviewed
See detailNew observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN
Stevens, M. H.; Evans, J. S.; Schneider, N. M. et al

in Geophysical Research Letters (2015)

We identify molecular nitrogen (N2) emissions in the Martian upper atmosphere using the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We report ... [more ▼]

We identify molecular nitrogen (N2) emissions in the Martian upper atmosphere using the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We report the first observations of the N2 Lyman-Birge-Hopfield (LBH) bands at Mars and confirm the tentative identification of the N2 Vegard-Kaplan (VK) bands. We retrieve N2 density profiles from the VK limb emissions and compare calculated limb radiances between 90 and 210km against both observations and predictions from a Mars general circulation model (GCM). Contrary to earlier analyses using other satellite data, we find that N2 abundances exceed GCM results by about a factor of 2 at 130km but are in agreement at 150km. The analysis and interpretation are enabled by a linear regression method used to extract components of UV spectra from IUVS limb observations. © 2015. American Geophysical Union. All Rights Reserved. [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
Peer Reviewed
See detailNonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS
Lo, D. Y.; Yelle, R. V.; Schneider, N. M. et al

in Geophysical Research Letters (2015)

Using the Mars Atmospheric and Volatile EvolutioN mission (MAVEN) Imaging Ultraviolet Spectrograph (IUVS), we found periodic longitudinal variations in CO2 density in the Martian atmosphere. These density ... [more ▼]

Using the Mars Atmospheric and Volatile EvolutioN mission (MAVEN) Imaging Ultraviolet Spectrograph (IUVS), we found periodic longitudinal variations in CO2 density in the Martian atmosphere. These density variations are derived from observations of the CO2+ (B2Σ+→X2Π) emission from limb scans in the 100-190 km altitude range. The variations exhibit significant structure with longitudinal wave numbers 1, 2, and 3 in an effectively constant local solar time frame, and we attribute this structure to nonmigrating tides. The wave-2 component is dominated by the diurnal eastward moving DE1 tide at the equator and the semidiurnal stationary S0 tide at the midlatitudes. Wave-3 is dominated by the diurnal eastward moving DE2 tide, with possibly the semidiurnal eastward moving SE1 tide causing an amplitude increase at the midlatitudes. Structure in the wave-1 component can be explained by the semidiurnal westward moving SW1 tide. ©2015. American Geophysical Union. [less ▲]

Detailed reference viewed: 15 (0 ULiège)
Full Text
Peer Reviewed
See detailThe structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations
Jain, S. K.; Stewart, A. I. F.; Schneider, N. M. et al

in Geophysical Research Letters (2015)

We report a comprehensive study of Mars dayglow observations focusing on upper atmospheric structure and seasonal variability. We analyzed 744 vertical brightness profiles comprised of ∼109,300 spectra ... [more ▼]

We report a comprehensive study of Mars dayglow observations focusing on upper atmospheric structure and seasonal variability. We analyzed 744 vertical brightness profiles comprised of ∼109,300 spectra obtained with the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite. The dayglow emission spectra show features similar to previous UV measurements at Mars. We find a significant drop in thermospheric scale height and temperature between LS = 218° and LS = 337-352°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. We report the detection of a second, low-altitude peak in the emission profile of OI 297.2 nm, confirmation of the prediction that the absorption of solar Lyman alpha emission is an important energy source there. The CO2+ UV doublet peak intensity is well correlated with simultaneous observations of solar 17-22 nm irradiance at Mars. © 2015. American Geophysical Union. All Rights Reserved. [less ▲]

Detailed reference viewed: 21 (1 ULiège)
Full Text
Peer Reviewed
See detailRetrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN
Evans, J. S.; Stevens, M. H.; Lumpe, J. D. et al

in Geophysical Research Letters (2015)

We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the ... [more ▼]

We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO2 densities to derive temperature variability between 170 and 220km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO2 densities at 170km vary by a factor of about 2.5, (2) on average, the N2/CO2 increases from 0.042±0.017 at 130km to 0.12±0.06 at 200km, and (3) the mean upper atmospheric temperature is 324±22K for local times near 14:00. © 2015. American Geophysical Union. All Rights Reserved. [less ▲]

Detailed reference viewed: 12 (0 ULiège)
See detailCassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies
Ajello, J. M.; West, R. A.; Malone, C. P. et al

Conference (2011, December 01)

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of ... [more ▼]

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan. [less ▲]

Detailed reference viewed: 24 (2 ULiège)