References of "Steele, I. A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
Gaia Collaboration; van Leeuwen, F.; Vallenari, A. et al

in Astronomy and Astrophysics (2017), 601

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and ... [more ▼]

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. <BR /> Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. <BR /> Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. <BR /> Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. <BR /> Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A> [less ▲]

Detailed reference viewed: 63 (7 ULiège)
Full Text
Peer Reviewed
See detailGaia Data Release 1: Testing parallaxes with local Cepheids and RR Lyrae stars
Clementini, G.; Eyer, L.; Ripepi, V. et al

in Astronomy and Astrophysics (2017), 605

Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as ... [more ▼]

Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σΩ/Ω< 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σΩ/Ω< 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σΩ/Ω< 0.5). The new relations were computed using multi-band (V,I,J,Ks) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and MV- [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018. © ESO, 2017. [less ▲]

Detailed reference viewed: 37 (16 ULiège)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 49 (7 ULiège)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 79 (11 ULiège)
Full Text
Peer Reviewed
See detailLOTUS: a low-cost, ultraviolet spectrograph
Steele, I. A.; Marchant, J. M.; Jermak, H. E. et al

in Monthly Notices of the Royal Astronomical Society (2016), 460

We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all ... [more ▼]

We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5 × 95 arcsec) and wide (5 × 25 arcsec) options that are optimized for spectral resolution and flux calibration, respectively. On sky testing shows a wavelength range of 3200-6300 Å with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependent spectral resolution of R = 225-430. By repeated observations of the symbiotic emission line star AG Peg, we demonstrate the wavelength stability of the system is <2 Å rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition. [less ▲]

Detailed reference viewed: 15 (0 ULiège)
Full Text
Peer Reviewed
See detailTHE SPITZER MICROLENSING PROGRAM AS A PROBE for GLOBULAR CLUSTER PLANETS: ANALYSIS of OGLE-2015-BLG-0448
Poleski, R.; Zhu, W.; Christie, G. W. et al

in Astrophysical Journal (2016), 823(1),

The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence ... [more ▼]

The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ((μcl (N, E) = +0.36 ± 0.10, +1.42 ± 0.10 mas yr-1) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer. © 2016. The American Astronomical Society. All rights reserved. [less ▲]

Detailed reference viewed: 13 (0 ULiège)
Full Text
Peer Reviewed
See detailMASS MEASUREMENTS of ISOLATED OBJECTS from SPACE-BASED MICROLENSING
Zhu, W.; Calchi Novati, S.; Gould, A. et al

in Astrophysical Journal (2016), 825(1),

We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the ... [more ▼]

We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ±7 BD at 5.9 ±1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ±0.04 star at 6.9 ±1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted. © 2016. The American Astronomical Society. All rights reserved. [less ▲]

Detailed reference viewed: 7 (0 ULiège)
Full Text
Peer Reviewed
See detailOGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED by SIMULTANEOUS GROUND-BASED and SPACE-BASED OBSERVATIONS
Han, C.; Udalski, A.; Gould, A. et al

in Astrophysical Journal (2016), 828(1),

We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope. The light curves seen from the ... [more ▼]

We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope. The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses of ∼1.0 M⊙ and ∼0.9 M⊙ located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color-magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations. © 2016. The American Astronomical Society. All rights reserved. [less ▲]

Detailed reference viewed: 9 (0 ULiège)
Full Text
Peer Reviewed
See detailOGLE-2011-BLG-0265Lb: A jovian microlensing planet orbiting an m dwarf
Skowron, J.; Shin, I.-G.; Udalski, A. et al

in Astrophysical Journal (2015), 804(1),

We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the ... [more ▼]

We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal, combined with extended observations throughout the event, allows us to accurately model the observed light curve. However, the final microlensing solution remains degenerate, yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is Mp = 0.9 ± 0.3 MJ, and the planet is orbiting a star with a mass M = 0.22 ± 0.06 M. The second possible configuration (2? away) consists of a planet with Mp = 0.6 ± 0.3 MJ and host star with M = 0.14 ± 0.06 M. The system is located in the Galactic disk 34 kpc toward the Galactic bulge. In both cases, with an orbit size of 1.52.0 AU, the planet is a cold Jupiterlocated well beyond the snow line of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate. © 2015. The American Astronomical Society. All rights reserved. [less ▲]

Detailed reference viewed: 13 (0 ULiège)
Full Text
Peer Reviewed
See detailPathway to the galactic distribution of planets: Combined Spitzer and ground-based Microlens parallax measurements of 21 single-lens events
Novati, S. C.; Gould, A.; Udalski, A. et al

in Astrophysical Journal (2015), 804(1),

We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ∼1 AU west of Earth in ... [more ▼]

We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ∼1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated. © 2015. The American Astronomical Society. All rights reserved. [less ▲]

Detailed reference viewed: 14 (0 ULiège)
Full Text
Peer Reviewed
See detailA census of variability in globular cluster M 68 (NGC 4590)
Kains, N.; Arellano Ferro, A.; Figuera Jaimes, R. et al

in Astronomy and Astrophysics (2015), 578

Aims. We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD ... [more ▼]

Aims. We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. Methods. We reduced our data using difference image analysis to achieve the best possible photometry in the crowded field of the cluster. In doing so, we show that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M 68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. Results. M 68 had 45 previously confirmed variables, including 42 RRL and 2 SX Phoenicis (SX Phe) stars. In this paper we determine new periods and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect 4 additional SX Phe stars and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M 68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different classes of variables, we derived values for the metallicity of the cluster of [Fe/H] = -2.07 ± 0.06 on the ZW scale, or -2.20 ± 0.10 on the UVES scale, and found true distance moduli μ<inf>0</inf> = 15.00 ± 0.11 mag (using RR0 stars), 15.00 ± 0.05 mag (using RR1 stars), 14.97 ± 0.11 mag (using SX Phe stars), and 15.00 ± 0.07 mag (using the M<inf>V</inf> -[Fe/H] relation for RRL stars), corresponding to physical distances of 10.00 ± 0.49, 9.99 ± 0.21, 9.84 ± 0.50, and 10.00 ± 0.30 kpc, respectively. Thanks to the first use of difference image analysis on time-series observations of M 68, we are now confident that we have a complete census of the RRL stars in this cluster. © ESO, 2015. [less ▲]

Detailed reference viewed: 19 (0 ULiège)
Full Text
Peer Reviewed
See detailRed noise versus planetary interpretations in the microlensing event ogle-2013-BLG-446
Bachelet, E.; Bramich, D. M.; Han, C. et al

in Astrophysical Journal (2015), 812(2),

For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method ... [more ▼]

For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing data sets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (Amax ∼ 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (∼3M) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favor the planetary interpretation when systematic errors are taken into account. © 2015. The American Astronomical Society. All rights reserved.. [less ▲]

Detailed reference viewed: 26 (0 ULiège)
Full Text
Peer Reviewed
See detailA Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406
Tsapras, Y.; Choi, J.-Y.; Street, R. A. et al

in Astrophysical Journal (2014), 782

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve ... [more ▼]

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\pm 0.43\ M_{\rm J}$ planet orbiting a $0.44\pm 0.07\ M_{\odot}$ early M-type star. The distance to the lens is $4.97\pm 0.29$\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens. [less ▲]

Detailed reference viewed: 95 (4 ULiège)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-311: A planetary candidate below the threshold of reliable detection
Yee, J. C.; Hung, L.-W.; Bond, I. A. et al

in Astrophysical Journal (2013), 769(1), 77

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a ... [more ▼]

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~140. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question. [less ▲]

Detailed reference viewed: 33 (11 ULiège)
Full Text
Peer Reviewed
See detailMicrolensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs
Choi, J.-Y.; Han, C.; Udalski, A. et al

in Astrophysical Journal (2013), 768

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD ... [more ▼]

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries. [less ▲]

Detailed reference viewed: 68 (2 ULiège)
Full Text
Peer Reviewed
See detailA giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251
Kains, N.; Street, R. A.; Choi, J.-Y. et al

in Astronomy and Astrophysics (2013), 552

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing ... [more ▼]

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. <BR /> Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10[SUP]-3[/SUP]. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. <BR /> Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 M[SUB]J[/SUB] orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M[SUB]⊙[/SUB]. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU. [less ▲]

Detailed reference viewed: 56 (15 ULiège)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-523: "Failed Planet" = RS CVn Star
Gould, A.; Yee, J. C.; Bond, I. A. et al

in Astrophysical Journal (2013), 763

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The ... [more ▼]

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I). [less ▲]

Detailed reference viewed: 32 (7 ULiège)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-073L: An M-dwarf with a Substellar Companion at the Planet/Brown Dwarf Boundary
Street, R. A.; Choi, J.-Y.; Tsapras, Y. et al

in Astrophysical Journal (2013), 763

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the ... [more ▼]

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I)[SUB] S, 0[/SUB], is 1.221 ± 0.051 mag, and from our lens model we derive a source radius of 14.7 ± 1.3 R [SUB]&sun;[/SUB], suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 ± 0.0006. The Einstein crossing time of the event, t [SUB]E[/SUB] = 44.3 ± 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D[SUB]L[/SUB] = 2.8 ± 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M [SUB] L, 1[/SUB] = 0.16 ± 0.03 M [SUB]&sun;[/SUB], while the companion has M [SUB] L, 2[/SUB] = 11.0 ± 2.0 M [SUB]J[/SUB], putting it in the boundary zone between planets and brown dwarfs. [less ▲]

Detailed reference viewed: 33 (3 ULiège)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-328Lb: a sub-Neptune orbiting very late M dwarf ?
Furusawa, K.; Udalski, A.; Sumi, T. et al

in Astrophysical Journal (2013), 91

We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and ... [more ▼]

We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the host's a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions. [less ▲]

Detailed reference viewed: 27 (11 ULiège)
Full Text
Peer Reviewed
See detailA New Type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-magnification Gravitational Microlensing Events
Choi, J.-Y.; Shin, I.-G.; Han, C. et al

in Astrophysical Journal (2012), 756

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion ... [more ▼]

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the essentially different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the χ[SUP]2[/SUP] difference between the planetary and binary model is ~3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ[SUP]2[/SUP] ~ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common. [less ▲]

Detailed reference viewed: 58 (5 ULiège)