References of "Segransan, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOrbital and spectral characterization of the benchmark T-type brown dwarf HD 19467B
Maire, Anne-Lise ULiege; Molaverdikhani, K.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 639

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due ... [more ▼]

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with radial velocities and imaging, making it a valuable object for such studies. <BR /> Aims: We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. <BR /> Methods: We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from the instruments HARPS, NaCo, HIRES, UVES, and ASAS. Furthermore, we use proper motion data of the star from HIPPARCOS and Gaia. <BR /> Results: We refined the properties of the host star and derived an age of 8.0[SUP]+2.0[/SUP][SUB]-1.0[/SUB] Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This age estimate is slightly younger than previous age estimates of ~9-11 Gyr based on isochrones. No orbital curvature is seen in the current imaging, radial velocity, and astrometric data. From a joint fit of the data, we refined the orbital parameters for HD 19467B, including: a period of 398[SUP]+95[/SUP][SUB]-93[/SUB] yr, an inclination of 129.8[SUP]+8.1[/SUP][SUB]-5.1[/SUB] deg, an eccentricity of 0.56 ± 0.09, a longitude of the ascending node of 134.8 ± 4.5 deg, and an argument of the periastron of 64.2[SUP]+5.5[/SUP][SUB]-6.3[/SUB] deg. We assess a dynamical mass of 74[SUP]+12[/SUP][SUB]-9[/SUB] M[SUB]J[/SUB]. The fit with atmospheric models of the spectrophotometric data of the companion indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042[SUP]+77[/SUP][SUB]-71[/SUB] K, and a high surface gravity of 5.34[SUP]+0.8[/SUP][SUB]-0.9[/SUB] dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. (1997, ApJ, 491, 856) models; whereas, the other evolutionary models used tend to underestimate its cooling rate. <P />The reduced images shown in Fig. 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47</A> <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 1100.C-0481, 0100.C-0234, 096.C-0602, 072.C-0488, 183.C-0972, 084.D-0965, 188.C-0265, 192.C-0852, and 0100.D-0444. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
Peer Reviewed
See detailThree short-period Jupiters from TESS. HIP 65Ab, TOI-157b, and TOI-169b
Nielsen, L. D.; Brahm, R.; Bouchy, F. et al

in Astronomy and Astrophysics (2020), 639

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period ... [more ▼]

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078 M[SUB]J[/SUB] planet in a grazing transit configuration with an impact parameter of b = 1.17[SUB]-0.08[/SUB][SUP]+0.10[/SUP]. As a result the radius is poorly constrained, 2.03[SUB]-0.49[/SUB][SUP]+0.61[/SUP]R[SUB]J[/SUB]. The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q[SUB]s[/SUB][SUP]'[/SUP] = 10[SUP]7[/SUP] - 10[SUP]9[/SUP]. We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13 M[SUB]J[/SUB] and a radius of 1.29 ± 0.02 R[SUB]J[/SUB]. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06 M[SUB]J[/SUB] and a radius of 1.09[SUB]-0.05[/SUB][SUP]+0.08[/SUP]R[SUB]J[/SUB]. Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. [less ▲]

Detailed reference viewed: 21 (3 ULiège)
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailISPY-NACO Imaging Survey for Planets around Young stars. Survey description and results from the first 2.5 years of observations
Launhardt, R.; Henning, Th; Quirrenbach, A. et al

in Astronomy and Astrophysics (2020), 635

Context. The occurrence rate of long-period (a ≳ 50 au) giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process ... [more ▼]

Context. The occurrence rate of long-period (a ≳ 50 au) giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects both dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate. <BR /> Aims: We aim to detect and characterise wide-orbit giant planets during and shortly after their formation phase within protoplanetary and debris discs around nearby young stars. <BR /> Methods: We carry out a large L'-band high-contrast direct imaging survey for giant planets around 200 young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60° field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100 mas. This paper introduces the NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years. <BR /> Results: We achieve a mean 5 σ contrast of ∆L' = 6.4 ± 0.1 mag at 150 mas and a background limit of L'[SUB]bg[/SUB] = 16.5±0.2 mag at >1.''5. Our detection probability is >50% for companions with ≳8 M[SUB]Jup[/SUB] at semi-major axes of 80-200 au and >13 M[SUB]Jup[/SUB] at 30-250 au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have already contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We have discovered two new close-in low-mass stellar companions around R CrA and HD 193571 and report in this paper the discovery of close co-moving low-mass stellar companions around HD 72660 and HD 92536. Furthermore, we report L'-band scattered light images of the discs around eleven stars, six of which have never been imaged at L'-band before. <BR /> Conclusions: The first 2.5 yr of the NACO-ISPY survey have already demonstrated that VLT/NACO combined with our survey strategy can achieve the anticipated sensitivity to detect giant planets and reveal new close stellar companions around our target stars. <P />ESO program IDs 096.C-0679, 097.C-0206, 198.C-612, and 199.C-0065. [less ▲]

Detailed reference viewed: 26 (1 ULiège)
Full Text
Peer Reviewed
See detailThree Short Period Jupiters from TESS
Nielsen, L. D.; Brahm, R.; Bouchy, F. et al

E-print/Working paper (2020)

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period ... [more ▼]

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V=11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 Mjup planet in a grazing transit configuration with impact parameter b = 1.17 +0.10/-0.08. As a result the radius is poorly constrained, 2.03 +0.61/-0.49 Rjup. We perform a full phase-curve analysis of the TESS data and detect both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass 1.18 +/- 0.13 Mjup and radius 1.29 +/- 0.02 Rjup. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V=12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V=12.4 G-type star. It has a mass of 0.79 +/- 0.06 Mjup and radius 1.09 +0.08/-0.05 Rjup. Despite having the longest orbital period (P=2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with Fe/H ranging from 0.18 - 0.24. [less ▲]

Detailed reference viewed: 34 (4 ULiège)
Full Text
Peer Reviewed
See detailOrbital and spectral analysis of the benchmark brown dwarf HD 4747B
Peretti, S.; Ségransan, D.; Lavie, B. et al

in Astronomy and Astrophysics (2019), 631

Context. The study of high-contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or ... [more ▼]

Context. The study of high-contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or spectrum is used and adjusted with model spectra together with the estimated age of the system. These models still need to be properly tested and constrained. HD 4747B is a brown dwarf close to the H burning mass limit, orbiting a nearby (d = 19.25 ± 0.58 pc), solar-type star (G9V); it has been observed with the radial velocity method for over almost two decades. Its companion was also recently detected by direct imaging, allowing a complete study of this particular object. <BR /> Aims: We aim to fully characterize HD 4747B by combining a well-constrained dynamical mass and a study of its observed spectral features in order to test evolutionary models for substellar objects and to characterize its atmosphere. <BR /> Methods: We combined the radial velocity measurements of High Resolution Echelle Spectrometer (HIRES) and CORALIE taken over two decades and high-contrast imaging of several epochs from NACO, NIRC2, and SPHERE to obtain a dynamical mass. From the SPHERE data we obtained a low-resolution spectrum of the companion from Y to H band, and two narrow band-width photometric measurements in the K band. A study of the primary star also allowed us to constrain the age of the system and its distance. <BR /> Results: Thanks to the new SPHERE epoch and NACO archival data combined with previous imaging data and high- precision radial velocity measurements, we were able to derive a well- constrained orbit. The high eccentricity (e = 0.7362 ± 0.0025) of HD 4747B is confirmed, and the inclination and the semi-major axis are derived (i = 47.3 ± 1.6°, a = 10.01 ± 0.21 au). We derive a dynamical mass of m[SUB]B[/SUB] = 70.0 ± 1.6 M[SUB]Jup[/SUB], which is higher than a previous study but in better agreement with the models. By comparing the object with known brown dwarfs spectra, we derive a spectral type of L9 and an effective temperature of 1350 ± 50 K. With a retrieval analysis we constrain the oxygen and carbon abundances and compare them with the values from the HR 8799 planets. <P />Based on observations made with the instrument SPHERE (Prog. ID 198.C-0209) and NaCo (Prog. ID 081.C-0917(A)) at the Paranal observatory and with the CORALIE echelle spectrograph mounted on the 1.2 m Swiss telescope at La Silla Observatory. [less ▲]

Detailed reference viewed: 19 (1 ULiège)
Full Text
Peer Reviewed
See detailWASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b
Hellier, Coel; Anderson, D. R.; Barkaoui, Khalid ULiege et al

in Monthly Notices of the Royal Astronomical Society (2019), 490

We report on four new transiting hot Jupiters discovered by the WASP- South survey. WASP-178b transits a V = 9.9, A1V star with T[SUB]eff[/SUB] = 9350 ± 150 K, the second-hottest transit host known. It ... [more ▼]

We report on four new transiting hot Jupiters discovered by the WASP- South survey. WASP-178b transits a V = 9.9, A1V star with T[SUB]eff[/SUB] = 9350 ± 150 K, the second-hottest transit host known. It has a highly bloated radius of 1.81 ± 0.09 R[SUB]Jup[/SUB], in line with the known correlation between high irradiation and large size. With an estimated temperature of 2470 ± 60 K, the planet is one of the best targets for studying ultrahot Jupiters that is visible from the Southern hemisphere. The three host stars WASP-184, WASP-185, and WASP-192 are all post-main-sequence G0 stars of ages 4-8 Gyr. The larger stellar radii (1.3-1.7 M[SUB]☉[/SUB]) mean that the transits are relatively shallow (0.7-0.9 per cent) even though the planets have moderately inflated radii of 1.2-1.3 R[SUB]Jup[/SUB]. WASP-185b has an eccentric orbit (e = 0.24) and a relatively long orbital period of 9.4 d. A star that is 4.6 arcsec from WASP-185 and 4.4 mag fainter might be physically associated. [less ▲]

Detailed reference viewed: 37 (4 ULiège)
Full Text
Peer Reviewed
See detailWASP-169, WASP-171, WASP-175, and WASP-182: three hot Jupiters and one bloated sub-Saturn mass planet discovered by WASP-South
Nielsen, L. D.; Bouchy, F.; Turner, O. D. et al

in Monthly Notices of the Royal Astronomical Society (2019), 489(2), 2478-2487

We present the discovery of four new giant planets from the Wide Angle Search for Planets-South (WASP-South), three hot Jupiters and one bloated sub-Saturn mass planet: WASP-169b, WASP-171b, WASP-175b ... [more ▼]

We present the discovery of four new giant planets from the Wide Angle Search for Planets-South (WASP-South), three hot Jupiters and one bloated sub-Saturn mass planet: WASP-169b, WASP-171b, WASP-175b, and WASP-182b. Besides the discovery photometry from WASP-South we use radial velocity measurements from CORALIE and HARPS and follow-up photometry from EulerCam, TRAPPIST-North and -South, and SPECULOOS. WASP-169b is a low-density Jupiter (M=0.561 ± 0.061 {M_Jup}, R=1.304^{+0.150}_{-0.073} {R_Jup}) orbiting a V = 12.17 F8 subgiant in a 5.611 d orbit. WASP-171b is a typical hot Jupiter (M=1.084 ± 0.094 {M_Jup}, R=0.98^{+0.07}_{-0.04} {R_Jup}, P = 3.82 d) around a V = 13.05 G0 star. We find a linear drift in the radial velocities of WASP-171 spanning 3.5 yr, indicating the possibility of an additional outer planet or stellar companion. WASP-175b is an inflated hot Jupiter (M = 0.99 ± 0.13 M[SUB]Jup[/SUB], R = 1.208 ± 0.081 R[SUB]Jup[/SUB], P = 3.07 d) around a V = 12.04 F7 star, which possibly is part of a binary system with a star 7.9 arcsec away. WASP-182b is a bloated sub-Saturn mass planet (M = 0.148 ± 0.011 M[SUB]Jup[/SUB], R = 0.850 ± 0.030 R[SUB]Jup[/SUB]) around a metal-rich V = 11.98 G5 star ([Fe/H] = 0.27 ± 0.11). With an orbital period of P = 3.377 d, it sits right in the apex of the sub-Jovian desert, bordering the upper and lower edge of the desert in both the mass-period and radius-period plane. WASP-169b, WASP- 175b, and WASP-182b are promising targets for atmospheric characterization through transmission spectroscopy, with expected transmission signals of 121, 150, and 264 ppm, respectively. [less ▲]

Detailed reference viewed: 36 (9 ULiège)
Full Text
Peer Reviewed
See detailWASP-180Ab: Doppler tomography of an hot Jupiter orbiting the primary star in a visual binary
Temple, L. Y.; Hellier, C.; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2019)

We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 ± 0.1 M[SUB ... [more ▼]

We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 ± 0.1 M[SUB]Jup[/SUB], 1.24 ± 0.04 R[SUB]Jup[/SUB] planet to be in a misaligned, retrograde orbit around an F7 star with T[SUB]eff[/SUB] = 6500 K and a moderate rotation speed of vsin i[SUB]⋆[/SUB] = 19.9 km s[SUP]-1[/SUP]. The host star is the primary of a V = 10.7 binary, where a secondary separated by ̃5″ (̃1200 AU) contributes ̃ 30% of the light. WASP-180Ab therefore adds to a small sample of transiting hot Jupiters known in binary systems. A 4.6-day modulation seen in the WASP data is likely to be the rotational modulation of the companion star, WASP-180B. [less ▲]

Detailed reference viewed: 30 (6 ULiège)
Full Text
Peer Reviewed
See detailWASP-166b: a bloated super-Neptune transiting a V = 9 star
Hellier, Coel; Anderson, D. R.; Triaud, A. H. M. J. et al

in Monthly Notices of the Royal Astronomical Society (2019), 488

We report the discovery of WASP-166b, a super-Neptune planet with a mass of 0.1 M[SUB]Jup[/SUB] (1.9 M[SUB]Nep[/SUB]) and a bloated radius of 0.63 R[SUB]Jup[/SUB]. It transits a V = 9.36, F9V star in a 5 ... [more ▼]

We report the discovery of WASP-166b, a super-Neptune planet with a mass of 0.1 M[SUB]Jup[/SUB] (1.9 M[SUB]Nep[/SUB]) and a bloated radius of 0.63 R[SUB]Jup[/SUB]. It transits a V = 9.36, F9V star in a 5.44-d orbit that is aligned with the stellar rotation axis (sky-projected obliquity angle λ = 3 ± 5 deg). Variations in the radial-velocity measurements are likely the result of magnetic activity over a 12-d stellar rotation period. WASP-166b appears to be a rare object within the `Neptune desert'. [less ▲]

Detailed reference viewed: 29 (5 ULiège)
Full Text
Peer Reviewed
See detailThree hot-Jupiters on the upper edge of the mass-radius distribution: WASP-177, WASP-181, and WASP-183
Turner, Oliver D.; Anderson, D. R.; Barkaoui, K. et al

in Monthly Notices of the Royal Astronomical Society (2019), 485

We present the discovery of three transiting planets from the WASP survey, two hot-Jupiters: WASP-177 b (˜0.5 M[SUB]Jup[/SUB], ˜1.6 R[SUB]Jup[/SUB]) in a 3.07-d orbit of a V = 12.6 K2 star, WASP-183 b (˜0 ... [more ▼]

We present the discovery of three transiting planets from the WASP survey, two hot-Jupiters: WASP-177 b (˜0.5 M[SUB]Jup[/SUB], ˜1.6 R[SUB]Jup[/SUB]) in a 3.07-d orbit of a V = 12.6 K2 star, WASP-183 b (˜0.5 M[SUB]Jup[/SUB], ˜1.5 R[SUB]Jup[/SUB]) in a 4.11-d orbit of a V = 12.8 G9/K0 star; and one hot-Saturn planet WASP-181 b (˜0.3 M[SUB]Jup[/SUB], ˜1.2 R[SUB]Jup[/SUB]) in a 4.52-d orbit of a V = 12.9 G2 star. Each planet is close to the upper bound of mass-radius space and has a scaled semimajor axis, a/R[SUB]*[/SUB], between 9.6 and 12.1. These lie in the transition between systems that tend to be in orbits that are well aligned with their host-star's spin and those that show a higher dispersion. [less ▲]

Detailed reference viewed: 32 (5 ULiège)
Full Text
Peer Reviewed
See detailWASP-190b: Tomographic Discovery of a Transiting Hot Jupiter
Temple, L. Y.; Hellier, C.; Almleaky, Y. et al

in Astronomical Journal (2019), 157

We report the discovery of WASP-190b, an exoplanet on a 5.37 day orbit around a mildly evolved F6 IV-V star with V = 11.7, {T}[SUB]eff[/SUB]} = 6400 ± 100 K, M [SUB]*[/SUB] = 1.35 ± 0.05 M [SUB]⊙[/SUB ... [more ▼]

We report the discovery of WASP-190b, an exoplanet on a 5.37 day orbit around a mildly evolved F6 IV-V star with V = 11.7, {T}[SUB]eff[/SUB]} = 6400 ± 100 K, M [SUB]*[/SUB] = 1.35 ± 0.05 M [SUB]⊙[/SUB], and R [SUB]*[/SUB] = 1.6 ± 0.1 R [SUB]⊙[/SUB]. The planet has a radius of R [SUB]P[/SUB] = 1.15 ± 0.09 R [SUB]Jup[/SUB] and a mass of M [SUB]P[/SUB] = 1.0 ± 0.1 M [SUB]Jup[/SUB], making it a mildly inflated hot Jupiter. It is the first hot Jupiter confirmed via Doppler tomography with an orbital period of >5 days. The orbit is also marginally misaligned with respect to the stellar rotation, with λ = 21° ± 6° measured using Doppler tomography. [less ▲]

Detailed reference viewed: 25 (4 ULiège)
Full Text
Peer Reviewed
See detailGaia Data Release 2. Variable stars in the colour-absolute magnitude diagram
Gaia Collaboration; Eyer, L.; Rimoldini, L. et al

in Astronomy and Astrophysics (2019), 623(A), 110

Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag. <BR /> Aims: We showcase stellar variability in the Galactic colour-absolute magnitude ... [more ▼]

Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag. <BR /> Aims: We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. <BR /> Methods: We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. <BR /> Results: Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. <BR /> Conclusions: Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars. <P />A movie associated to Fig. 11 is available at <A href="https://www.aanda.org/10.1051/0004-6361/201833304/olm">http: //https://www.aanda.org</A>.Data are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/623/A110">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/623/A110</A>. [less ▲]

Detailed reference viewed: 42 (5 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of three new transiting hot Jupiters: WASP-161 b, WASP-163 b and WASP-170 b
Barkaoui, K.; Burdanov, Artem ULiege; Hellier, C. et al

in Astronomical Journal (2019), 157(2),

We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE ... [more ▼]

We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE spectrograph and high-precision transit light curves obtained with the TRAPPIST-North, TRAPPIST-South, SPECULOOS-South, NITES, and Euler telescopes have enabled us to determine the masses and radii for these transiting exoplanets. WASP-161\,b completes an orbit around its $V=11.1$ F6V-type host star in 5.406 days, and has a mass and radius of $2.5\pm 0.2$$M_{Jup}$ and $1.14\pm 0.06$ $R_{Jup}$ respectively. WASP-163\,b has an orbital period of 1.609 days, a mass of $1.9\pm0.2$ $M_{Jup}$, and a radius of $1.2\pm0.1$ $R_{Jup}$. Its host star is a $V=12.5$ G8-type dwarf. WASP-170\,b is on a 2.344 days orbit around a G1V-type star of magnitude $V=12.8$. It has a mass of $1.7\pm0.2$ $M_{Jup}$ and a radius of $1.14\pm0.09$ $R_{Jup}$. Given their irradiations ($\sim10^9$ erg.s$^{-1}$.cm$^{-2}$) and masses, the three new planets sizes are in good agreement with classical structure models of irradiated giant planets. [less ▲]

Detailed reference viewed: 45 (10 ULiège)
Full Text
Peer Reviewed
See detailSpectral and orbital characterisation of the directly imaged giant planet HIP 65426 b
Cheetham, A. C.; Samland, M.; Brems, S. S. et al

in Astronomy and Astrophysics (2019), 622

HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new L' and M' observations of the planet from the NACO instrument at the VLT from the ... [more ▼]

HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new L' and M' observations of the planet from the NACO instrument at the VLT from the NACO-ISPY survey, as well as a new Y -H spectrum and K-band photometry from SPHERE-SHINE. Using these data, we confirm the nature of the companion as a warm, dusty planet with a mid-L spectral type. From comparison of its SED with the BT-Settl atmospheric models, we derive a best-fit effective temperature of T[SUB]eff[/SUB] = 1618 ± 7 K, surface gravity log g = 3.78[SUB]-0.03[/SUB][SUP]+0.04[/SUP] and radius R = 1.17 ± 0.04R[SUB]J[/SUB] (statistical uncertainties only). Using the DUSTY and COND isochrones we estimate a mass of 8 ± 1M[SUB]J[/SUB]. Combining the astrometric measurements from our new datasets and from the literature, we show the first indications of orbital motion of the companion (2.6σ significance)and derive preliminary orbital constraints. We find a highly inclined orbit (i = 1.07[SUB]-10[/SUB][SUP]+13[/SUP] deg) with an orbital period of 800[SUB]-400[/SUB][SUP]+1200[/SUP] yr. We also report SPHERE sparse aperture masking observations that investigate the possibility that HIP 65426 b was scattered onto its current orbit by an additional companion at a smaller orbital separation. From this data we rule out the presence of brown dwarf companions with masses greater than 16 M[SUB]J[/SUB] at separations larger than 3 AU, significantly narrowing the parameter space for such a companion. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 199.C-0065 (PI: Launhardt), 198.C-0209 (PI: Beuzit) and 1100.C-0481 (PI: Beuzit). [less ▲]

Detailed reference viewed: 12 (0 ULiège)
Full Text
Peer Reviewed
See detailNew transiting hot Jupiters discovered by WASP-South, Euler/CORALIE, and TRAPPIST-South
Hellier, Coel; Anderson, D. R.; Bouchy, F. et al

in Monthly Notices of the Royal Astronomical Society (2019), 482

We report the discovery of eight hot-Jupiter exoplanets from the WASP-South transit survey. WASP-144b has a mass of 0.44 M[SUB]Jup[/SUB], a radius of 0.85 R[SUB]Jup[/SUB], and is in a 2.27-d orbit around ... [more ▼]

We report the discovery of eight hot-Jupiter exoplanets from the WASP-South transit survey. WASP-144b has a mass of 0.44 M[SUB]Jup[/SUB], a radius of 0.85 R[SUB]Jup[/SUB], and is in a 2.27-d orbit around a V = 12.9, K2 star which shows a 21-d rotational modulation. WASP-145Ab is a 0.89 M[SUB]Jup[/SUB] planet in a 1.77-d orbit with a grazing transit. The host is a V = 11.5, K2 star with a companion 5 arcsec away and 1.4 mag fainter. WASP-158b is a relatively massive planet at 2.8 M[SUB]Jup[/SUB] with a radius of 1.1 R[SUB]Jup[/SUB] and a 3.66-d orbit. It transits a V = 12.1, F6 star. WASP-159b is a bloated hot Jupiter (1.4 R[SUB]Jup[/SUB] and 0.55 M[SUB]Jup[/SUB]) in a 3.8-d orbit around a V = 12.9, F9 star. WASP-162b is a massive planet in a relatively long and highly eccentric orbit (5.2 M[SUB]Jup[/SUB], P = 9.6 d, e = 0.43). It transits a V = 12.2, K0 star. WASP-168b is a bloated hot Jupiter (0.42 M[SUB]Jup[/SUB]; 1.5 R[SUB]Jup[/SUB]) in a 4.15-d orbit with a grazing transit. The host is a V = 12.1, F9 star. WASP-172b is a bloated hot Jupiter (0.5 M[SUB]Jup[/SUB]; 1.6 R[SUB]Jup[/SUB]) in a 5.48-d orbit around a V = 11.0, F1 star. WASP-173Ab is a massive planet (3.7 M[SUB]Jup[/SUB]) with a 1.2 R[SUB]Jup[/SUB] radius in a circular orbit with a period of 1.39 d. The host is a V = 11.3, G3 star, being the brighter component of the double-star system WDS23366 - 3437, with a companion 6 arcsec away and 0.8 mag fainter. One of the two stars shows a rotational modulation of 7.9 d. [less ▲]

Detailed reference viewed: 30 (4 ULiège)
Full Text
See detailThe discovery of WASP-134b, WASP-134c, WASP-137b, WASP-143b and WASP-146b: three hot Jupiters and a pair of warm Jupiters orbiting Solar-type stars
Anderson, D. R.; Bouchy, F.; Brown, D. J. A. et al

E-print/Working paper (2018)

We report the discovery by WASP of five planets orbiting moderately bright ($V$ = 11.0-12.9) Solar-type stars. WASP-137b, WASP-143b and WASP-146b are typical hot Jupiters in orbits of 3-4 d and with ... [more ▼]

We report the discovery by WASP of five planets orbiting moderately bright ($V$ = 11.0-12.9) Solar-type stars. WASP-137b, WASP-143b and WASP-146b are typical hot Jupiters in orbits of 3-4 d and with masses in the range 0.68--1.11 $M_{\rm Jup}$. WASP-134 is a metal-rich ([Fe/H] = +0.40 $\pm$ 0.07]) G4 star orbited by two warm Jupiters: WASP-134b ($M_{\rm pl}$ = 1.41 $M_{\rm Jup}$; $P = 10.1$ d; $e = 0.15 \pm 0.01$; $T_{\rm eql}$ = 950 K) and WASP-134c ($M_{\rm pl} \sin i$ = 0.70 $M_{\rm Jup}$; $P = 70.0$ d; $e = 0.17 \pm 0.09$; $T_{\rm eql}$ = 500 K). From observations of the Rossiter-McLaughlin effect of WASP-134b, we find its orbit to be misaligned with the spin of its star ($\lambda = -44 \pm 10^\circ$). WASP-134 is a rare example of a system with a short-period giant planet and a nearby giant companion. In-situ formation or disc migration seem more likely explanations for such systems than does high-eccentricity migration. [less ▲]

Detailed reference viewed: 27 (2 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of WASP-174b: Doppler tomography of a near-grazing transit
Temple, L. Y.; Hellier, C.; Almleaky, Y. et al

in Monthly Notices of the Royal Astronomical Society (2018), 480

We report the discovery and tomographic detection of WASP-174b, a planet with a near-grazing transit on a 4.23-d orbit around a V= 11.9, F6V star with [Fe/H] = 0.09 ± 0.09. The planet is in a moderately ... [more ▼]

We report the discovery and tomographic detection of WASP-174b, a planet with a near-grazing transit on a 4.23-d orbit around a V= 11.9, F6V star with [Fe/H] = 0.09 ± 0.09. The planet is in a moderately misaligned orbit with a sky-projected spin-orbit angle of λ = 31° ± 1°. This is in agreement with the known tendency for orbits around hotter stars to be misaligned. Owing to the grazing transit, the planet's radius is uncertain with a possible range of 0.8-1.8 R[SUB]Jup[/SUB]. The planet's mass has an upper limit of 1.3 M[SUB]Jup[/SUB]. WASP-174 is the faintest hot-Jupiter system so far confirmed by tomographic means. [less ▲]

Detailed reference viewed: 49 (7 ULiège)
Full Text
Peer Reviewed
See detailDynamical masses of M-dwarf binaries in young moving groups. I. The case of TWA 22 and GJ 2060
Rodet, L.; Bonnefoy, M.; Durkan, S. et al

in Astronomy and Astrophysics (2018), 618

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass ... [more ▼]

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass regime (< 1 M[SUB]☉[/SUB]). GJ 2060 AB and TWA 22 AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (β Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups. <BR /> Aims: We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA 22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models. <BR /> Methods: We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain Monte-Carlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060 AB and TWA 22 AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT/SINFONI were gathered to extract the individual near-infrared (1.1-2.5 μm) medium-resolution (R ̃ 1500 - 2000) spectra of GJ 2060 A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects. <BR /> Results: We find a total mass of 0.18 ± 0.02 M[SUB]☉[/SUB] for TWA 22, which is in good agreement with model predictions at the age of the β Pic moving group. We obtain a total mass of 1.09 ± 0.10 M[SUB]☉[/SUB] for GJ 2060. We estimate a spectral type of M1 ± 0.5, L/L[SUB]☉[/SUB] = -1.20 ± 0.05 dex, and T[SUB]eff[/SUB] = 3700 ± 100 K for GJ 2060 A. The B component is a M3 ± 0.5 dwarf with L/L[SUB]☉[/SUB] = -1.63 ± 0.05 dex and T[SUB]eff[/SUB] = 3400 ± 100 K. The dynamical mass of GJ 2060 AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50-150 Myr. It is 10%-20% (1-2σ, depending on the assumed age) above the model's predictions, corresponding to an underestimation of 0.10-0.20 M[SUB]☉[/SUB]. Coevality suggests a young age for the system (̃50 Myr) according to most evolutionary models. <BR /> Conclusions: TWA 22 validates the predictions of recent evolutionary tracks at ̃20 Myr. On the other hand, we evidence a 1-2σ mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model's tendency to underestimate the mass of young low-mass stars. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailWASP-147b, 160Bb, 164b and 165b: two hot Saturns and two Jupiters, including two planets with metal-rich hosts
Lendl, M.; Anderson, D. R.; Bonfanti, Andrea ULiege et al

in Monthly Notices of the Royal Astronomical Society (2018)

We report the discovery of four transiting hot Jupiters, WASP-147, WASP-160B, WASP-164 and WASP-165 from the WASP survey. WASP-147b is a near Saturn-mass (M[SUB]P[/SUB] = 0.28M[SUB]J[/SUB]) object with a ... [more ▼]

We report the discovery of four transiting hot Jupiters, WASP-147, WASP-160B, WASP-164 and WASP-165 from the WASP survey. WASP-147b is a near Saturn-mass (M[SUB]P[/SUB] = 0.28M[SUB]J[/SUB]) object with a radius of 1.11 R[SUB]J[/SUB] orbiting a G4 star with a period of 4.6 d. WASP-160Bb has a mass and radius (M[SUB]p[/SUB] = 0.28 M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.09 R[SUB]J[/SUB]) near-identical to WASP-147b, but is less irradiated, orbiting a metal-rich ([Fe/H][SUB]*[/SUB] = 0.27) K0 star with a period of 3.8 d. WASP-160B is part of a near equal-mass visual binary with an on-sky separation of 28.5 arcsec. WASP-164b is a more massive (M[SUB]P[/SUB] = 2.13 M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.13 R[SUB]J[/SUB]) hot Jupiter, orbiting a G2 star on a close-in (P = 1.8 d), but tidally stable orbit. WASP-165b is a classical (M[SUB]p[/SUB] = 0.66 M[SUB]J[/SUB], R[SUB]P[/SUB] = 1.26 R[SUB]J[/SUB]) hot Jupiter in a 3.5 d period orbit around a metal-rich ([Fe/H][SUB]*[/SUB] = 0.33) star. WASP-147b and WASP-160Bb are promising targets for atmospheric characterization through transmission spectroscopy, while WASP-164b presents a good target for emission spectroscopy. [less ▲]

Detailed reference viewed: 27 (4 ULiège)