References of "Sebastian, Daniel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA transit timing variation observed for the long-period extremely low-density exoplanet HIP 41378 f
Bryant, Edward M.; Bayliss, Daniel; Santerne, Alexandre et al

in Monthly Notices of the Royal Astronomical Society (2021), 504

HIP 41378 f is a temperate 9.2 ± 0.1 R⊕ planet with period of 542.08 d and an extremely low density of 0.09 ± 0.02 g cm-3. It transits the bright star HIP 41378 (V = 8.93), making it an exciting target ... [more ▼]

HIP 41378 f is a temperate 9.2 ± 0.1 R⊕ planet with period of 542.08 d and an extremely low density of 0.09 ± 0.02 g cm-3. It transits the bright star HIP 41378 (V = 8.93), making it an exciting target for atmospheric characterization including transmission spectroscopy. HIP 41378 was monitored photometrically between the dates of 2019 November 19 and 28. We detected a transit of HIP 41378 f with NGTS, just the third transit ever detected for this planet, which confirms the orbital period. This is also the first ground-based detection of a transit of HIP 41378 f. Additional ground-based photometry was also obtained and used to constrain the time of the transit. The transit was measured to occur 1.50 h earlier than predicted. We use an analytic transit timing variation (TTV) model to show the observed TTV can be explained by interactions between HIP 41378 e and HIP 41378 f. Using our TTV model, we predict the epochs of future transits of HIP 41378 f, with derived transit centres of TC, 4 = 2459 355.087-0.022+0.031 (2021 May) and TC, 5 = 2459 897.078-0.060+0.114 (2022 November). [less ▲]

Detailed reference viewed: 43 (13 ULiège)
Full Text
Peer Reviewed
See detailSix transiting planets and a chain of Laplace resonances in TOI-178
Leleu, A.; Alibert, Y.; Hara, N. C. et al

in Astronomy and Astrophysics (2021), 649

Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their ... [more ▼]

Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152‒0.070+0.073 to 2.87‒0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02‒0.23+0.28 to 0.177‒0.061+0.055 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. [less ▲]

Detailed reference viewed: 17 (4 ULiège)
Full Text
Peer Reviewed
See detailSPECULOOS: Ultracool dwarf transit survey. Target list and strategy
Sebastian, Daniel ULiege; Gillon, Michaël ULiege; Ducrot, Elsa ULiege et al

in Astronomy and Astrophysics (2021), 645

Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make ... [more ▼]

Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make it possible to carry out a thorough atmospheric characterisation with next-generation telescopes, such as the James Webb Space telescope (JWST) or Extremely Large Telescope (ELT). In this context, the TRAPPIST-1 planets form a unique benchmark system that has garnered the interest of a large scientific community. <BR /> Aims: The SPECULOOS survey is an exoplanet transit survey targeting a volume-limited (40 pc) sample of ultracool dwarf stars (of spectral type M7 and later) that is based on a network of robotic 1 m telescopes especially designed for this survey. The strategy for brighter and earlier targets leverages on the synergy with the ongoing TESS space-based exoplanet transit survey. <BR /> Methods: We define the SPECULOOS target list as the sum of three non-overlapping sub-programmes incorporating the latest type objects (T[SUB]eff[/SUB] ≲ 3000 K). Programme 1 features 365 dwarfs that are small and near enough to make it possible to detail atmospheric characterisation of an `Earth-like' planet with the upcoming JWST. Programme 2 features 171 dwarfs of M5-type and later for which a significant detection of a planet similar to TRAPPIST-1b should be within reach of TESS. Programme 3 features 1121 dwarfs that are later than M6-type. These programmes form the basis of our statistical census of short-period planets around ultracool dwarf stars. <BR /> Results: Our compound target list includes 1657 photometrically classified late-type dwarfs, with 260 of these targets classified, for the first time, as possible nearby ultracool dwarf stars. Our general observational strategy was to monitor each target between 100 and 200 h with our telescope network, making efficient use of the synergy with TESS for our Programme 2 targets and a proportion of targets in our Programme 1. <BR /> Conclusions: Based on Monte Carlo simulations, we expect to detect up to a few dozen temperate, rocky planets. We also expect a number of them to prove amenable for atmospheric characterisation with JWST and other future giant telescopes, which will substantially improve our understanding of the planetary population of the latest-type stars. <P />Catalogue of the sources is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A100">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A100</A> [less ▲]

Detailed reference viewed: 34 (4 ULiège)
Full Text
See detailDevelopment of the SPECULOOS exoplanet search project
Sebastian, Daniel ULiege; Pedersen, P. P.; Murray, C. A. et al

in Proceedings of SPIE: The International Society for Optical Engineering (2020, December 01), 11445

SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (< 40 pc) ultracool (< 3000K) dwarf stars. The project's main motivation is to discover ... [more ▼]

SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (< 40 pc) ultracool (< 3000K) dwarf stars. The project's main motivation is to discover potentially habitable planets well-suited for detailed atmospheric characterisation with upcoming giant telescopes, like the James Webb Space Telescope (JWST) and European Large Telescope (ELT). The project is based on a network of 1m robotic telescopes, namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in Tenerife, and the SAINTEx telescope in San Pedro Martir, Mexico. The prototype survey of the SPECULOOS project on the 60 cm TRAPPIST telescope (Chile) discovered the TRAPPIST-1 system, composed of seven temperate Earth-sized planets orbiting a nearby (12 pc) Jupiter-sized star. In this paper, we review the current status of SPECULOOS, its first results, the plans for its development, and its connection to the Transiting Exoplanet Survey Satellite (TESS) and JWST. [less ▲]

Detailed reference viewed: 27 (5 ULiège)
Full Text
Peer Reviewed
See detailπ Earth: A 3.14 day Earth-sized Planet from K2's Kitchen Served Warm by the SPECULOOS Team
Niraula, Prajwal; de Wit, Julien; Rackham, Benjamin V. et al

in Astronomical Journal (2020), 160

We report on the discovery of a transiting Earth-sized (0.95R[SUB]⊕[/SUB]) planet around an M3.5 dwarf star at 57 pc, EPIC 249631677. The planet has a period of ∼3.14 days, i.e., ∼π, with an installation ... [more ▼]

We report on the discovery of a transiting Earth-sized (0.95R[SUB]⊕[/SUB]) planet around an M3.5 dwarf star at 57 pc, EPIC 249631677. The planet has a period of ∼3.14 days, i.e., ∼π, with an installation of 7.45 S[SUB]⊕[/SUB]. The detection was made using publicly available data from K2's Campaign 15. We observed three additional transits with SPECULOOS Southern and Northern Observatories, and a stellar spectrum from Keck/HIRES, which allowed us to validate the planetary nature of the signal. The confirmed planet is well suited for comparative terrestrial exoplanetology. While exoplanets transiting ultracool dwarfs present the best opportunity for atmospheric studies of terrestrial exoplanets with the James Webb Space Telescope, those orbiting mid-M dwarfs within 100 pc such as EPIC 249631677b will become increasingly accessible with the next generation of observatories. [less ▲]

Detailed reference viewed: 55 (21 ULiège)
Full Text
See detailA Rare Pair of Eclipsing Brown Dwarfs Identified by the SPECULOOS Telescopes
Triaud, A. H. M. J.; Burgasser, A. J.; Burdanov, A. et al

in The Messenger (2020), 180

Brown dwarfs — stellar objects unable to sustain hydrogen fusion in their cores because of their low masses — continuously cool over their lifetimes. Evolution models have been created to reproduce this ... [more ▼]

Brown dwarfs — stellar objects unable to sustain hydrogen fusion in their cores because of their low masses — continuously cool over their lifetimes. Evolution models have been created to reproduce this behaviour, and to allow mass and age determination using their luminosity, temperatures, spectral types and other parameters. However, these models have not yet been fully validated or calibrated with observations. During a commissioning run of the SPECULOOS telescopes, we serendipitously discovered a rare double-line eclipsing binary, a member of the 45 Myr-old moving group Argus. This discovery permitted us to determine the masses, radii and ages of the brown dwarfs, and with their luminosities make a comparison to evolution models. The models reproduce these measurements remarkably well, although a measured offset in luminosity could result in systematic underestimation of brown dwarf masses by 20 to 30%. Calibrating these models is necessary as they are also used to infer the masses of young, directly imaged exoplanets such as those found at the VLT. [less ▲]

Detailed reference viewed: 44 (2 ULiège)
Full Text
Peer Reviewed
See detailPhotometry and performance of SPECULOOS-South
Murray, C. A.; Delrez, Laetitia ULiege; Pedersen, P. P. et al

in Monthly Notices of the Royal Astronomical Society (2020), 495

SPECULOOS-South, an observatory composed of four independent 1-m robotic telescopes, located at ESO Paranal, Chile, started scientific operation in 2019 January. This Southern hemisphere facility operates ... [more ▼]

SPECULOOS-South, an observatory composed of four independent 1-m robotic telescopes, located at ESO Paranal, Chile, started scientific operation in 2019 January. This Southern hemisphere facility operates as part of the Search for Habitable Planets EClipsing ULtra-cOOl Stars (SPECULOOS), an international network of 1-m-class telescopes surveying for transiting terrestrial planets around the nearest and brightest ultracool dwarfs (UCDs). To automatically and efficiently process the observations of SPECULOOS-South, and to deal with the specialized photometric requirements of UCD targets, we present our automatic pipeline. This pipeline includes an algorithm for automated differential photometry and an extensive correction technique for the effects of telluric water vapour, using ground measurements of the precipitable water vapour. Observing very red targets in the near-infrared can result in photometric systematics in the differential light curves, related to the temporally-varying, wavelength-dependent opacity of the Earth's atmosphere. These systematics are sufficient to affect the daily quality of the light curves, the longer time-scale variability study of our targets and even mimic transit-like signals. Here we present the implementation and impact of our water vapour correction method. Using the 179 nights and 98 targets observed in the I + z' filter by SPECULOOS-South since 2019 January, we show the impressive photometric performance of the facility (with a median precision of ∼1.5 mmag for 30-min binning of the raw, non-detrended light curves) and assess its detection potential. We compare simultaneous observations with SPECULOOS-South and TESS, to show that we readily achieve high- precision, space-level photometry for bright, UCDs, highlighting SPECULOOS-South as the first facility of its kind. [less ▲]

Detailed reference viewed: 38 (4 ULiège)
Full Text
Peer Reviewed
See detailAn Eclipsing Substellar Binary in a Young Triple System discovered by SPECULOOS
Triaud, Amaury H. M. J.; Burgasser, Adam J.; Burdanov, Artem ULiege et al

in Nature Astronomy (2020), 4

Mass, radius, and age are three of the most fundamental parameters for celestial objects, enabling studies of the evolution and internal physics of stars, brown dwarfs, and planets. Brown dwarfs are ... [more ▼]

Mass, radius, and age are three of the most fundamental parameters for celestial objects, enabling studies of the evolution and internal physics of stars, brown dwarfs, and planets. Brown dwarfs are hydrogen- rich objects that are unable to sustain core fusion reactions but are supported from collapse by electron degeneracy pressure. As they age, brown dwarfs cool, reducing their radius and luminosity. Young exoplanets follow a similar behaviour. Brown dwarf evolutionary models are relied upon to infer the masses, radii and ages of these objects. Similar models are used to infer the mass and radius of directly imaged exoplanets. Unfortunately, only sparse empirical mass, radius and age measurements are currently available, and the models remain mostly unvalidated. Double-line eclipsing binaries provide the most direct route for the absolute determination of the masses and radii of stars. Here, we report the SPECULOOS discovery of 2M1510A, a nearby, eclipsing, double-line brown dwarf binary, with a widely-separated tertiary brown dwarf companion. We also find that the system is a member of the $45\pm5$ Myr-old moving group, Argus. The system's age matches those of currently known directly-imaged exoplanets. 2M1510A provides an opportunity to benchmark evolutionary models of brown dwarfs and young planets. We find that widely-used evolutionary models do reproduce the mass, radius and age of the binary components remarkably well, but overestimate the luminosity by up to 0.65 magnitudes, which could result in underestimated photometric masses for directly-imaged exoplanets and young field brown dwarfs by 20 to 35%. [less ▲]

Detailed reference viewed: 58 (7 ULiège)
Full Text
Peer Reviewed
See detailNear-resonance in a System of Sub-Neptunes from TESS
Quinn, Samuel N.; Becker, Juliette C.; Rodriguez, Joseph E. et al

in Astronomical Journal (2019), 158

We report the Transiting Exoplanet Survey Satellite detection of a multi-planet system orbiting the V = 10.9 K0 dwarf TOI-125. We find evidence for up to five planets, with varying confidence. Three ... [more ▼]

We report the Transiting Exoplanet Survey Satellite detection of a multi-planet system orbiting the V = 10.9 K0 dwarf TOI-125. We find evidence for up to five planets, with varying confidence. Three transit signals with high signal-to-noise ratio correspond to sub-Neptune-sized planets (2.76, 2.79, and 2.94 R [SUB]⊕[/SUB]), and we statistically validate the planetary nature of the two inner planets (P [SUB] b [/SUB] = 4.65 days, P [SUB] c [/SUB] = 9.15 days). With only two transits observed, we report the outer object (P [SUB].03[/SUB] = 19.98 days) as a planet candidate with high signal-to-noise ratio. We also detect a candidate transiting super-Earth (1.4 R [SUB]⊕[/SUB]) with an orbital period of only 12.7 hr and a candidate Neptune-sized planet (4.2 R [SUB]⊕[/SUB]) with a period of 13.28 days, both at low signal-to-noise ratio. This system is amenable to mass determination via radial velocities and transit-timing variations, and provides an opportunity to study planets of similar size while controlling for age and environment. The ratio of orbital periods between TOI-125 b and c (P [SUB] c [/SUB]/P [SUB] b [/SUB] = 1.97) is slightly lower than an exact 2:1 commensurability and is atypical of multiple planet systems from Kepler, which show a preference for period ratios just wide of first-order period ratios. A dynamical analysis refines the allowed parameter space through stability arguments and suggests that despite the nearly commensurate periods, the system is unlikely to be in resonance. [less ▲]

Detailed reference viewed: 41 (3 ULiège)
Full Text
Peer Reviewed
See detailThe L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf
Kostov, Veselin B.; Schlieder, Joshua E.; Barclay, Thomas et al

in Astronomical Journal (2019), 158

We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia ... [more ▼]

We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia- measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R [SUB]⊕[/SUB] to 1.6 R [SUB]⊕[/SUB]. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false- positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system. [less ▲]

Detailed reference viewed: 44 (4 ULiège)
Full Text
See detailThe SPECULOOS Southern Observatory Begins its Hunt for Rocky Planets
Jehin, Emmanuel ULiege; Gillon, Michaël ULiege; Queloz, D. et al

in Messenger (2018), 174

The SPECULOOS Southern Observatory (SSO), a new facility of four 1- metre robotic telescopes, began scientific operations at Cerro Paranal on 1 January 2019. The main goal of the SPECULOOS project is to ... [more ▼]

The SPECULOOS Southern Observatory (SSO), a new facility of four 1- metre robotic telescopes, began scientific operations at Cerro Paranal on 1 January 2019. The main goal of the SPECULOOS project is to explore approximately 1000 of the smallest (≤ 0.15 R[SUB]⊙[/SUB]), brightest (K[SUB]mag[/SUB] ≤ 12.5), and nearest (d ≤ 40 pc) very low mass stars and brown dwarfs. It aims to discover transiting temperate terrestrial planets well-suited for detailed atmospheric characterisation with future giant telescopes like ESO’s Extremely Large Telescope (ELT) and the NASA James Webb Telescope (JWST). The SSO is the core facility of SPECULOOS. The exquisite astronomical conditions at Cerro Paranal will enable SPECULOOS to detect exoplanets as small as Mars. Here, we briefly describe SPECULOOS, and present the features and performance of the SSO facility. [less ▲]

Detailed reference viewed: 45 (2 ULiège)