References of "Schoemann, V"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMacro-nutrient concentrations in Antarctic pack ice: Overall patterns and overlooked processes
Fripiat, François ULiege; Meiners, K.M.; Vancoppenolle, M. et al

in Elementa: Science of the Anthropocene (2017), 5(13),

Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro ... [more ▼]

Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and silicic acid concentrations change with time, as expected from a seasonally productive ecosystem. In winter, salinity-normalized nitrate and silicic acid concentrations (C*) in sea ice are close to seawater concentrations (Cw), indicating little or no biological activity. In spring, nitrate and silicic acid concentrations become partially depleted with respect to seawater (C* < Cw), commensurate with the seasonal build-up of ice microalgae promoted by increased insolation. Stronger and earlier nitrate than silicic acid consumption suggests that a significant fraction of the primary productivity in sea ice is sustained by flagellates. By both consuming and producing ammonium and nitrite, the microbial community maintains these nutrients at relatively low concentrations in spring. With the decrease in insolation beginning in late summer, dissolved inorganic nitrogen and silicic acid concentrations increase, indicating imbalance between their production (increasing or unchanged) and consumption (decreasing) in sea ice. Unlike the depleted concentrations of both nitrate and silicic acid from spring to summer, phosphate accumulates in sea ice (C* > Cw). The phosphate excess could be explained by a greater allocation to phosphorus-rich biomolecules during ice algal blooms coupled with convective loss of excess dissolved nitrogen, preferential remineralization of phosphorus, and/or phosphate adsorption onto metal-organic complexes. Ammonium also appears to be efficiently adsorbed onto organic matter, with likely consequences to nitrogen mobility and availability. This dataset supports the view that the sea ice microbial community is highly efficient at processing nutrients but with a dynamic quite different from that in oceanic surface waters calling for focused future investigations. [less ▲]

Detailed reference viewed: 35 (2 ULiège)
See detailSnow cover and short-term synoptic events drive biogeochemical dynamics in winter Weddell Sea pack ice (AWECS cruise - June to August 2013)
Tison, J.-L.; Delille, Bruno ULiege; Dieckmann, G. et al

Conference (2014, March)

This paper presents the preliminary results of an integrated multidisciplinary study of pack ice biogeochemistry in the Weddell Sea during the winter 2013 (June-August). The sea ice biogeochemistry group ... [more ▼]

This paper presents the preliminary results of an integrated multidisciplinary study of pack ice biogeochemistry in the Weddell Sea during the winter 2013 (June-August). The sea ice biogeochemistry group was one of the components of the AWECS (Antarctic Winter Ecosystem and Climate Study) cruise (Polarstern ANTXXIX-6). A total of 12 stations were carried out by the sea ice biogeochemistry group, which collected a suite of variables in the fields of physics, inorganic chemistry, gas content and composition, microbiology, biogeochemistry, trace metals and the carbonate system in order to give the best possible description of the sea ice cover and its interactions at interfaces. Samples were collected in the atmosphere above (gas fluxes), in the snow cover, in the bulk ice (ice cores), in the brines (sackholes) and in the sea water below (0m, 1m, 30 m). Here we present the results of basic physico-chemical (T°, bulk ice salinity, brine volumes, brine salinity, Rayleigh numbers) and biological (Chla) measurements in order to give an overview of the general status of the Weddell Sea winter pack ice encountered, and discuss how it controls climate relevant biogeochemical processes. Our results from the first set of 9 stations, mainly sampled along the Greenwich meridian and the easternmost part of the Weddell Sea definitively refute the view of a biogeochemically “frozen” sea ice during the Winter. This has already been demonstrated for the Spring and Summer, but we now see that sea ice sustains considerable biological stocks and activities throughout the Winter, despite the reduced amount of available PAR radiation. Accretion of the snow cover appears to play an essential role in driving biogeochemical activity, through warming from insulation, thus favouring brine transport, be it through potential convection, surface brine migration (brine tubes) or flooding. This results in a “widening” of the internal autumn layer (quite frequent in this rafting-dominated sea ice cover) and increase of the chla burden with age. Results from the second set of 3 stations in the western branch of the Weddell Sea gyre confirm that it comprises a mixture of older fast/second year ice floes with younger first-year ice floes. The older ice had the highest Chla concentrations of the entire cruise (>200 mgl-1), in an internal community enclosed within desalinized impermeable upper and lower layers. The first-year ice differs from that in the eastern Weddell Sea as it is dominated by columnar ice and (weak) algal communities are only found on the bottom or near the surface (no internal maximum). [less ▲]

Detailed reference viewed: 69 (2 ULiège)
See detailYear Round survey of Ocean-Sea Ice-Air Exchanges – the YROSIAE survey
Delille, Bruno ULiege; Haskell, T.; Champenois, Willy ULiege et al

Conference (2014, March)

YROSIAE survey aimed to carry out a year-round survey of land-fast sea ice focusing on the study of sea ice physics and biogeochemistry in order to a) better understand and budget exchanges of energy and ... [more ▼]

YROSIAE survey aimed to carry out a year-round survey of land-fast sea ice focusing on the study of sea ice physics and biogeochemistry in order to a) better understand and budget exchanges of energy and matter across the ocean-sea ice-atmosphere interfaces during sea ice growth and decay and b) quantify their potential impact on fluxes of climate gases (CO2, DMS, CH4, N2O) to the atmosphere and on carbon and macro- nutrients and micro-nutrients export to the ocean. Ice cores, sea water, brines and exported material were collected at regular intervals about 1 km off cape Evans from November 2011 to December 2011 and from September 2012 to December 2012 in trace-metal clean conditions. Samples are processed to characterize both the vertical distribution and temporal changes of climate gases (CO2, DMS, CH4, N2O), CO2-related parameters (dissolved inorganic carbon, total alkalinity and CaCO3 amount), physical parameters (salinity, temperature, texture, 18O), biogeochemical parameters (macro-nutrients, particulate and dissolved organic carbon, δ13C, δ30Si and δ15N, micro-nutrients - including iron) and biological parameters ( chlorophyll a, primary production within sea ice derived from O2:Ar and O2:N ratios, autotrophic species determination, bacterial cell counts a.s.o.). In addition, we deployed a micro-meterological tower and automatic chambers to measure air-ice CO2 fluxes. Continuous measurements of ice temperature and ice accretion or melting, both at the ice-ocean and the ice-atmosphere interfaces were provided by an “Ice-T” ice mass balance buoy. Sediment traps collected particles below the ice between 10 and 70 m, while dust collectors provided a record of a full suite of trace metal and dust at different levels above the ground. We will present the aims, overall approach and sampling strategy of the YROSIAE survey. In addition we will also discuss CO2 dynamics within the ice and present temporal air-ice CO2 fluxes over the year. We will provide a first budget of air-ice CO2 fluxes during ice growth for Antarctica sea ice and discuss the impact of the snow cover on air-ice CO2 fluxes. [less ▲]

Detailed reference viewed: 89 (9 ULiège)
See detailBiological and physical controls on DMS,P dynamics in ice-shelf-influenced fast ice
Carnat, G.; Zhou, Jiayun ULiege; Papakyriakou, T. et al

Conference (2014, March)

Dimethylsulfide (DMS) is a volatile sulphur compound produced by the degradation of dimethylsulphoniopropionate (DMSP), a metabolite synthesized by microalgae as i.a. cryoprotectant and osmoregulator. It ... [more ▼]

Dimethylsulfide (DMS) is a volatile sulphur compound produced by the degradation of dimethylsulphoniopropionate (DMSP), a metabolite synthesized by microalgae as i.a. cryoprotectant and osmoregulator. It is also an important climate-active gas, being the primary source of marine-derived sulphate aerosols which play an important role in the earth-atmosphere radiation balance. In the last two decades, there has been an increasing interest in the role of the marine cryosphere in the DMS,P cycle, motivated by repeated observations of very high DMS,P concentrations in sea ice. However, our understanding of the factors driving the spatiotemporal variations of these high concentrations, and hence the fate of the sea ice DMS pool, remains limited. To date, studies have essentially focused on biotic factors, attributing the high DMS,P concentrations to the high biomass of the sympagic communities, and to their strong physiological response to the low temperature and high salinity stresses of the brine habitat. We present here an approach integrating both biotic and abiotic factors, as we investigate the influence of sea ice growth processes and brine dynamics on the DMS,P cycle. We focus on a fast ice site (Cape Evans, McMurdo Sound, Antarctica) under the influence of ice-shelf waters, and provide measurements covering a full cycle of ice growth. We show a good correspondence between isolated maxima of DMS,P in interior ice and the occurrence of platelet crystals in the ice texture. We develop the idea that platelet ice formation in May strongly modifies the production of DMS,P by (1) favoring the incorporation of strong DMSP producers and by (2) exposing these producers to stronger environmental stresses. We then show the influence of the development and decline of a strong diatom bloom from October to November on bottom ice DMS,P concentrations. Finally, we show that the increase in brine volume fraction (permeability) on warming in early December triggers (1) an important release of DMS to the ocean through brine convection, and (2) a vertical redistribution of DMSP across the ice. [less ▲]

Detailed reference viewed: 83 (5 ULiège)
See detailLand-fast sea ice of McMurdo Sound as a source of bio-essential trace metals for primary productivity in the Ross Sea, Antarctica
Schoemann, V.; de Jong, J.T.M.; Tison, J.L. et al

Conference (2014, March)

Iron (Fe) is an essential micronutrient. Its low abundance limits primary productivity in more than 30% of the oceans, including the Southern Ocean, and has a crucial impact on the biogeochemical cycles ... [more ▼]

Iron (Fe) is an essential micronutrient. Its low abundance limits primary productivity in more than 30% of the oceans, including the Southern Ocean, and has a crucial impact on the biogeochemical cycles of carbon and other elements with ultimate influence on the Earth climate system. Other trace metals, like Mn, Zn, Co and Cu are also required for microorganisms cell metabolism and may be (co-) limiting. Previous data on dissolved and particulate Fe concentration data showed that Fe is 10-100 times more concentrated in the sea ice than in underlying seawater and that sea ice melt can deliver up to 70% of the daily Fe supply to the surface waters. According to budget estimates in East Antarctica and in the Weddell Sea, accumulated Fe would largely derive from the underlying seawater rather than from atmospheric inputs. Most of the available data of trace metals in the sea ice concern pack ice and Fe. Only very scarce data exist on land-fast ice and on other trace metal concentrations. In this presentation, the general objective is to assess the role of land-fast ice as a source of Fe and other bio-essential trace metals (e.g. Mn, Zn, Cu, Mo, Cd), its impact on primary productivity and on the biological pump. Samples of sea ice, brines and seawater as well as dusts samples have been collected during the land-based sampling program YROSIAE at Cape Evans (Scott Base, McMurdo Sound, Ross Sea, Antarctica) from Nov 2011 to Dec 2011 and from Aug 2012 to Dec 2012. Dissolved and particulate trace metals concentrations have been measured by a recently developed method, which combines multiple element isotope dilution with preconcentration using the Nobias Chelate PA1 resin and ICP-MS analysis. Concentrations of trace metals in snow collected during the present study are one to up to five orders of magnitude higher than the concentrations previously observed in snow from East Antarctica, showing a much stronger dust input of these metals in McMurdo Sound. When comparing the concentrations obtained in the under-ice seawater with those obtained in the snow at McMurdo Sound, concentrations of Fe, Al, Mn, Co are much lower, whereas concentrations of Cu, Zn and Pb are similar and the concentrations of Ni, Mo and Cd are higher. Inventories of these trace metals in the land-fast sea ice give insights on its role as a source of bio-essential trace metal for the fuelling of the seasonal Ross Sea bloom. Other sources of these trace metals will be addressed and compared. [less ▲]

Detailed reference viewed: 116 (7 ULiège)
Full Text
Peer Reviewed
See detailPhysical and biological controls on DMS,P dynamics in ice-shelf influenced fast ice during a winter-spring and a spring-summer transitions
Carnat, G.; Zhou, Jiayun ULiege; Papakyriakou, T. et al

in Journal of Geophysical Research. Oceans (2014), 119

We report the seasonal and vertical variations of dimethylsulphide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in fast ice at Cape Evans, McMurdo Sound (Antarctica) during the spring-summer ... [more ▼]

We report the seasonal and vertical variations of dimethylsulphide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in fast ice at Cape Evans, McMurdo Sound (Antarctica) during the spring-summer transition in 2011 and winter-spring transition in 2012. We compare the variations of DMS,P observed to the seasonal evolution of the ice algal biomass and of the physical properties of the ice cover, with emphasis on the ice texture and brine dynamics. Isolated DMS and DMSP maxima were found during both seasonal episodes in interior ice and corresponded to the occurrence of platelet crystals in the ice texture. We show that platelet crystals formation corresponded in time and depth to the incorporation of dinoflagellates (strong DMSP producers) in the ice cover. We also show that platelet crystals could modify the environmental stresses on algal cells and perturb the vertical redistribution of DMS,P concentrations. We show that during the winter-spring transition in 2012, the DMS,P profiles were strongly influenced by the development and decline of a diatom dominated bloom in the bottom ice, with DMSP variations remarkably following chl a variations. During the spring-summer transition in 2011, the increase in brine volume fraction (influencing ice permeability) on warming was shown to trigger (1) an important release of DMS to the under-ice water through brine convection (2) a vertical redistribution of DMSP across the ice [less ▲]

Detailed reference viewed: 29 (3 ULiège)
Full Text
Peer Reviewed
See detailSouthern Ocean CO2 sink: The contribution of the sea ice
Delille, Bruno ULiege; Vancoppenolle, M; Geilfus, N.-X. et al

in Journal of Geophysical Research. Oceans (2014), 119

We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines ... [more ▼]

We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large over-saturation, relative to the atmosphere, to a marked under-saturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate minerals crystals and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea-icesea ice cover using the NEMO-LIM3 large-scale sea ice-ocean, and provide first estimates of spring and summer CO2 uptake from the atmosphere by Antarctic sea ice. Over the spring-summer period, the Antarctic sea-icesea ice cover is a net sink of atmospheric CO2 of 0.029 PgC, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean. [less ▲]

Detailed reference viewed: 65 (16 ULiège)
See detailOverview of CO2 dynamics within sea ice
Delille, Bruno ULiege; Geilfus, Nicolas-Xavier ULiege; Vancoppenolle, M. et al

Conference (2011)

Detailed reference viewed: 18 (5 ULiège)
See detailOceanic CO2 sink: the contribution of the marine cryosphere
Delille, Bruno ULiege; Vancoppenolle, M.; Tilbrook, B. et al

Conference (2010)

Detailed reference viewed: 11 (0 ULiège)
See detailOceanic CO2 sink : the contribution of the marine cryosphere
Delille, Bruno ULiege; Vancoppenolle, M.; Tilbrook, B. et al

Conference (2009, September)

Detailed reference viewed: 8 (0 ULiège)
See detailMicrobiological control on the cycling of Fe and its isotopes in Antarctic sea ice
Schoemann, V.; de Jong, J.; Lannuzel, D. et al

Poster (2008, July)

Detailed reference viewed: 19 (0 ULiège)
See detailCO2 dynamics and related air-ice-sea gas transfer in spring pack and land fast sea ice,
Delille, Bruno ULiege; Schoemann, V.; Lannuzel, D. et al

Poster (2007, March)

Detailed reference viewed: 9 (0 ULiège)
See detailCarbon dioxide dynamics in Antarctic pack ice and related air-ice CO2 fluxes
Delille, Bruno ULiege; Trevena, A.; Schoemann, V. et al

Conference (2005, May)

Detailed reference viewed: 7 (0 ULiège)
See detailCarbon Dioxide Dynamics in Antarctic Pack Ice and Transfer at the Ice-Sea and Air-Ice Interface
Delille, Bruno ULiege; Tison, J.-L.; Trevena, A.J. et al

Poster (2004, October)

Detailed reference viewed: 4 (0 ULiège)
See detailIron distribution in a sea ice environment
Lannuzel, D.; de Jong, J.; Schoemann, V. et al

Poster (2004, October)

Detailed reference viewed: 4 (0 ULiège)
See detailSIBClim: an Interdisciplinary Initiative on Sea Ice Biogeochemistry in a Climate Change Perspective
Tison, J.-L; Lancelo, C.; Chou, L. et al

Poster (2004, October)

Detailed reference viewed: 15 (0 ULiège)
See detailDo we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean ?
Borges, Alberto ULiege; Delille, Bruno ULiege; Schoemann, V. et al

Poster (2004, October)

Detailed reference viewed: 12 (0 ULiège)