References of "Schneider, N"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCharacteristics of Mars UV dayglow emissions from atomic oxygen at 130.4 and 135.6 nm: MAVEN/IUVS limb observations and modeling.
Ritter, Birgit ULiege; Gérard, Jean-Claude ULiege; Gkouvelis, Leonardos ULiege et al

in Journal of Geophysical Research. Space Physics (2019)

We present an overview of two Martian years oxygen dayglow limb observations of the ultraviolet (UV) emissions at 130.4 nm and 135.6 nm. The data have been collected with the IUVS instrument on board the ... [more ▼]

We present an overview of two Martian years oxygen dayglow limb observations of the ultraviolet (UV) emissions at 130.4 nm and 135.6 nm. The data have been collected with the IUVS instrument on board the MAVEN spacecraft. We use solar flux measurements of EUVM on board MAVEN to remove the solar induced variation and show the variations of the maximum limb brightness and altitude with season, SZA and latitude, which reflects the strong variability of the Martian atmosphere. The 130.4 and 135.6 nm peak brightness and altitudes are strongly correlated and behave similarly. Both emissions are modeled for selected data using Monte Carlo codes to calculate emissions arising from electron impact on O and CO2. Additional radiative transfer calculations are made to analyze the optically thick 130.4 nm emission. Model atmospheres from the Mars Climate Database serve as input. Both simulated limb profiles are in good agreement with the observations despite some deviations. We furthermore show that the observed 130.4 nm brightness is dominated by resonance scattering of the solar multiplet with a contribution (15-20%) by electron impact on O. Over 95% of the excitation at 135.6 nm arises from electron impact on O. Simulations indicate that the limb brightness is dependent on the oxygen and CO2 content, while the peak emission altitude is mainly driven by the CO2 content because of absorption processes. We deduce [O]/[CO2] mixing ratios of 3.1% and 3.0% at 130 km for datasets collected at LS=350° in Martian years 32 and 33. [less ▲]

Detailed reference viewed: 5 (2 ULiège)
Full Text
Peer Reviewed
See detailMartian dust storm impact on atmospheric H 2 O and D/H observed by ExoMars Trace Gas Orbiter
Vandaele, A. C.; Korablev, O.; Daerden, F. et al

in Nature (2019), 568

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to ... [more ▼]

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to solar heating of the dust 3 . In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars 4 . Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes 5,6 , as well as a decrease in the water column at low latitudes 7,8 . Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H 2 O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H 2 O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals 3 . The observed changes in H 2 O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere. © 2019, The Author(s), under exclusive licence to Springer Nature Limited. [less ▲]

Detailed reference viewed: 19 (4 ULiège)
Full Text
Peer Reviewed
See detailNo detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
Korablev, O.; Vandaele, A. C.; Montmessin, F. et al

in Nature (2019), 568

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of ... [more ▼]

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations 2–5 . These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere 6,7 , which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane 1,6,8 . Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections 2,4 . We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater 4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally. [less ▲]

Detailed reference viewed: 16 (3 ULiège)
Full Text
Peer Reviewed
See detailUV Study of the Fourth Positive Band System of CO and OI 135.6 nm From Electron Impact on CO and CO2
Ajello, J. M.; Malone, C. P.; Evans, J. S. et al

in Journal of Geophysical Research: Space Physics (2019), 124

We have measured the 30 and 100 eV far ultraviolet (FUV) emission cross sections of the optically allowed Fourth Positive Group (4PG) band system (A 1 Π → X 1 Σ + ) of CO and the optically forbidden O (5S ... [more ▼]

We have measured the 30 and 100 eV far ultraviolet (FUV) emission cross sections of the optically allowed Fourth Positive Group (4PG) band system (A 1 Π → X 1 Σ + ) of CO and the optically forbidden O (5S  →  3P) 135.6 nm atomic transition by electron-impact-induced-fluorescence of CO and CO2 . We present a model excitation cross section from threshold to high energy for the A 1Π state, including cascade by electron impact on CO. The A 1Π state is perturbed by triplet states leading to an extended FUV glow from electron excitation of CO. We derive a model FUV spectrum of the 4PG band system from dissociative excitation of CO2 , an important process observed on Mars and Venus. Our unique experimental setup consists of a large vacuum chamber housing an electron gun system and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging Ultraviolet Spectrograph optical engineering unit, operating in the FUV (110–170 nm). The determination of the total OI ( 5S o ) at 135.6 nm emission cross section is accomplished by measuring the cylindrical glow pattern of the metastable emission from electron impact by imaging the glow intensity about the electron beam from nominally zero to ~400 mm distance from the electron beam. The study of the glow pattern of O i (135.6 nm) from dissociative excitation of CO and CO 2 indicates that the OI (5 S) state has a kinetic energy of ~1 eV by modeling the radial glow pattern with the published lifetime of 180 μs for the OI (5 S) stat. [less ▲]

Detailed reference viewed: 19 (1 ULiège)
See detailCO2 variations in the Martian lower thermosphere from IUVS-MAVEN airglow observations.
Gkouvelis, Leonardos; Gérard, Jean-Claude ULiege; Ritter, Birgit ULiege et al

Conference (2018, September 17)

IUVS-MAVEN limb observations have been performed since 2014. We have analyzed almost four years of observations focusing on the O(1S) 297.2 nm dayglow emission line. We have developed an automatic ... [more ▼]

IUVS-MAVEN limb observations have been performed since 2014. We have analyzed almost four years of observations focusing on the O(1S) 297.2 nm dayglow emission line. We have developed an automatic methodology to retrieve the CO2 column densities near 80 km, a region difficult to probe by other techniques. We present nearly two Martian years of observations of pressure variations at different latitudes and comparisons withMCD model predictions. Generally, the best agreement is reached following scaling down of the MCD values from 0.3 to 0.8 to fit the observations. This result was previously expected on the basis of model comparisons with ultraviolet occultation measurements. [less ▲]

Detailed reference viewed: 29 (4 ULiège)
See detailAtomic oxygen in the Martian thermosphere traced by the 130.4 and 135.6 nm emission lines with MAVEN/IUVS
Ritter, Birgit ULiege; Gérard, Jean-Claude ULiege; Gkouvelis, Leonardos ULiege et al

Conference (2018, September)

We analyze limb observations of dayglow emissions from atomic oxygen in the upper Martian atmosphere. The data has been collected during the last almost four years by the Imaging Ultraviolet Spectrograph ... [more ▼]

We analyze limb observations of dayglow emissions from atomic oxygen in the upper Martian atmosphere. The data has been collected during the last almost four years by the Imaging Ultraviolet Spectrograph (IUVS) instrument on board the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft. Mean profiles for specific solar longitude, latitude and solar zenith angle ranges are created. We then use atmospheres from the Mars General Circulation models and in situ solar flux data from the MAVEN Extreme Ultraviolet Monitor (EUVM) to perform Monte Carlo and radiative transfer modeling for comparison with the observations. In order to match the results and to eventually retrieve oxygen densities, scaling factors are applied to the GCM atmospheric densities. We will present preliminary results of this analysis [less ▲]

Detailed reference viewed: 25 (1 ULiège)
See detail14 years of Mars' atmosphere monitoring by SPICAM on Mars Express
Lacombe, G.; Montmessin, F.; Korablev, O. et al

in From Mars Express to ExoMars (2018, February 01)

Not Available

Detailed reference viewed: 20 (6 ULiège)
See detailThree types of aurora on Mars
Schneider, N.; Jain, S.; Deighan, J. et al

Conference (2017, December)

Observations by the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft have identified three types of aurora on Mars, each profoundly different from comparable types on Earth and other ... [more ▼]

Observations by the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft have identified three types of aurora on Mars, each profoundly different from comparable types on Earth and other planets. The primary reason for these differences is Mars’ lack of a global magnetic field and presence of localized crustral magnetic fields primarily in the southern hemisphere. IUVS is MAVEN’s remote sensing instrument for study of the Mars atmosphere. The instrument records spatially-resolved spectra in the far-UV (110-190 nm) and Mid-UV (180-340 nm). By virtue of an internal scan mirror and a gimbaled instrument platform, IUVS obtains useful spectra on Mars with >50% duty cycle, including Mars’ nightside. IUVS performs limb scans during the spacecraft periapse, and obtains UV images of the planet from reconstructed apoapse disk scans. Two types of aurora have been detected on Mars’ nightside by virtue of emissions requiring excitation by precipitating charged particles. The first type, discrete aurora, are localized near the boundary between open and closed crustal magnetic field lines. They generally appear at ~140 km altitude and the spectra correspond to moderate mean electron energy precipitation. These detections confirm the discovery of discrete discovered by Mars Express/SPICAM. IUVS has discovered a second type, diffuse aurora, which are widespread and potentially global. They occur as low as 70 km altitude; the spectra, depth of penetration and timing are consistent with the precipitation of relativistic electrons from the Sun. IUVS has discovered a third type, proton aurora, on Mars’ dayside as excess hydrogen Lyman alpha emission confined to Mars’ thermosphere. The intermittent excesses appear correlated with enhanced solar wind conditions. This type is the most common form of aurora detected by IUVS. IUVS results dispel a common misconception that aurora only occur near the edges of closed planetary magnetic field lines. While this is true for terrestrial aurora and discrete aurora on Mars, it is false for Mars’ diffuse and proton auroras. In this sense, Mars serves as the best archetype for auroral processes on unmagnetized planets in our solar system and beyond. [less ▲]

Detailed reference viewed: 29 (2 ULiège)
See detailMars, Venus, Earth and Titan UV Laboratory Aeronomy by Electron Impact
Ajello, J.; Malone, C.P.; Eastes, R. et al

Conference (2017, December)

The UV response of the Mars, Earth, Titan and Venus upper atmospheres to the solar radiation fields [solar wind and solar EUV] is the focus of the present generation of Mars, Earth, Titan and Venus ... [more ▼]

The UV response of the Mars, Earth, Titan and Venus upper atmospheres to the solar radiation fields [solar wind and solar EUV] is the focus of the present generation of Mars, Earth, Titan and Venus missions. These missions are Mars Express (MEX), the Mars Atmosphere and Volatile Evolution Mission (MAVEN), Cassini at Titan, Global-scale Observations of the Limb and Disk (GOLD) mission for Earth and Venus Express (VEX). Each spacecraft is equipped with a UV spectrometer that senses far ultraviolet (FUV) emissions from 110-190 nm, whose dayglow intensities are proportional to three quantities:1) particle (electron, ion) fluxes, 2) the altitude distribution of species in the ionosphere: CO, CO2, O, N2 at Venus and Mars and N2, O and O2 at Titan and Earth and 3) the emission cross section for the interaction process. UV spectroscopy provides a benchmark to the present space environment and indicates pathways for removing upper atmosphere gas (e.g., water escape from Mars and Earth) or N2 escape at Titan over eons. We present a UV laboratory program that utilizes an instrument, unique in the world, at the University of Colorado that can measure excitation mechanisms by particle (electron, ion) impact and the resulting emission cross sections that include processes occurring in a planetary atmosphere, particularly the optically forbidden emissions presented by the Cameron bands, the Lyman Birge Hopfield bands and the OI 135.6 nm multiplet. There are presently uncertainties by a factor of two in the existing measurements of the emission cross section, affecting modeling of electron transport. We have utilized the MAVEN Imaging Ultraviolet Spectrograph (IUVS) engineering model which operates at moderate spectral resolution (~0.5–1.0nm FWHM) to obtain the full vibrational spectra of the Cameron band system CO(a 3Π → X 1Σ+) from both CO direct excitation and CO2 dissociative excitation, and for the dipole-allowed Fourth Positive band system of CO, while for N2 we have studied molecular nitrogen (N2 LBH bands, a 1Πg → X 1Σg+). We have performed laboratory measurements using mono-energetic electrons in a large chamber to excite band systems by the same processes as occur at low densities in planetary atmospheres. We have ascertained vibrational structure and emission cross sections for the strongest band systems on solar system objects. [less ▲]

Detailed reference viewed: 15 (1 ULiège)
Full Text
Peer Reviewed
See detailSPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere
Montmessin, F.; Korablev, O.; Lefèvre, F. et al

in Icarus (2017), 297

Detailed reference viewed: 41 (8 ULiège)
Full Text
See detailThe Martian diffuse aurora: Monte Carlo simulations and comparison with IUVS-MAVEN observations
Gérard, Jean-Claude ULiege; Soret, Lauriane ULiege; Schneider, N. et al

Conference (2016, December)

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar ... [more ▼]

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions with the IUVS on board the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and visible auroral emissions for initial electron energies from 0.1 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox–Duffendack–Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb intensities of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 100-200 keV produce maximum CO2+ UVD emission near 75 km. We combine SWEA and SEP electron energy spectra measured during diffuse aurora to calculate the volume emission rates and compare with IUVS observations of the emission limb profiles. The strongest predicted emissions are the CO2+ FDB, UVD and the CO Cameron bands. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below ~110 km. As a consequence, we show that the CO2+ UVD to the Cameron bands ratio increases at low altitude in the energetic diffuse aurora. [less ▲]

Detailed reference viewed: 45 (7 ULiège)
Full Text
Peer Reviewed
See detailMAVEN observations of the response of Mars to an interplanetary coronal mass ejection
Jakosky, B. M.; Grebowsky, J. M.; Luhmann, J. G. et al

in Science (2015), 350(6261),

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ... [more ▼]

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-Term evolution of the Mars atmosphere. [less ▲]

Detailed reference viewed: 33 (1 ULiège)
Full Text
Peer Reviewed
See detailEarly MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability
Bougher, S.; Jakosky, B.; Halekas, J. et al

in Science (2015), 350(6261),

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and ... [more ▼]

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-To-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. [less ▲]

Detailed reference viewed: 20 (2 ULiège)