References of "Sauvage, J.-F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOngoing flyby in the young multiple system UX Tauri
Ménard, F.; Cuello, N.; Ginski, C. et al

in Astronomy and Astrophysics (2020), 639

We present observations of the young multiple system UX Tauri to look for circumstellar disks and for signs of dynamical interactions. We obtained SPHERE/IRDIS deep differential polarization images in the ... [more ▼]

We present observations of the young multiple system UX Tauri to look for circumstellar disks and for signs of dynamical interactions. We obtained SPHERE/IRDIS deep differential polarization images in the J and H bands. We also used ALMA archival CO data. Large extended spirals are well detected in scattered light coming out of the disk of UX Tau A. The southern spiral forms a bridge between UX Tau A and C. These spirals, including the bridge connecting the two stars, all have a CO (3-2) counterpart seen by ALMA. The disk of UX Tau C is detected in scattered light. It is much smaller than the disk of UX Tau A and has a major axis along a different position angle, suggesting a misalignment. We performed PHANTOM SPH hydrodynamical models to interpret the data. The scattered light spirals, CO emission spirals and velocity patterns of the rotating disks, and the compactness of the disk of UX Tau C all point to a scenario in which UX Tau A has been perturbed very recently (∼1000 years) by the close passage of UX Tau C. <P />Movies associated to Fig. 3 are available at <A href="https://www.aanda.org/10.1051/0004-6 361/202038356/olm">http://https://www.aanda.org</A> [less ▲]

Detailed reference viewed: 28 (2 ULiège)
Full Text
Peer Reviewed
See detailOrbital and spectral characterization of the benchmark T-type brown dwarf HD 19467B
Maire, Anne-Lise ULiege; Molaverdikhani, K.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 639

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due ... [more ▼]

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with radial velocities and imaging, making it a valuable object for such studies. <BR /> Aims: We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. <BR /> Methods: We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from the instruments HARPS, NaCo, HIRES, UVES, and ASAS. Furthermore, we use proper motion data of the star from HIPPARCOS and Gaia. <BR /> Results: We refined the properties of the host star and derived an age of 8.0[SUP]+2.0[/SUP][SUB]-1.0[/SUB] Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This age estimate is slightly younger than previous age estimates of ~9-11 Gyr based on isochrones. No orbital curvature is seen in the current imaging, radial velocity, and astrometric data. From a joint fit of the data, we refined the orbital parameters for HD 19467B, including: a period of 398[SUP]+95[/SUP][SUB]-93[/SUB] yr, an inclination of 129.8[SUP]+8.1[/SUP][SUB]-5.1[/SUB] deg, an eccentricity of 0.56 ± 0.09, a longitude of the ascending node of 134.8 ± 4.5 deg, and an argument of the periastron of 64.2[SUP]+5.5[/SUP][SUB]-6.3[/SUB] deg. We assess a dynamical mass of 74[SUP]+12[/SUP][SUB]-9[/SUB] M[SUB]J[/SUB]. The fit with atmospheric models of the spectrophotometric data of the companion indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042[SUP]+77[/SUP][SUB]-71[/SUB] K, and a high surface gravity of 5.34[SUP]+0.8[/SUP][SUB]-0.9[/SUB] dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. (1997, ApJ, 491, 856) models; whereas, the other evolutionary models used tend to underestimate its cooling rate. <P />The reduced images shown in Fig. 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47</A> <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 1100.C-0481, 0100.C-0234, 096.C-0602, 072.C-0488, 183.C-0972, 084.D-0965, 188.C-0265, 192.C-0852, and 0100.D-0444. [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailVLT/SPHERE exploration of the young multiplanetary system PDS70
Mesa, D.; Keppler, M.; Cantalloube, F. et al

in Astronomy and Astrophysics (2019), 632

Context. PDS 70 is a young (5.4 Myr), nearby ( 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a ... [more ▼]

Context. PDS 70 is a young (5.4 Myr), nearby ( 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in H[SUB]α[/SUB] with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. <BR /> Aims: Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. <BR /> Methods: We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g., ANDROMEDA and PACO) to subtract the starlight. <BR /> Results: We re-detect both PDS 70 b and c and confirm that PDS 70 c is gravitationally bound to the star. We estimate this second planet to be less massive than 5 M[SUB]Jup[/SUB] and with a T[SUB]eff[/SUB] around 900 K. Also, it has a low gravity with logg between 3.0 and 3.5 dex. In addition, a third object has been identified at short separation ( 0.12'') from the star and gravitationally bound to the star. Its spectrum is however very blue, meaning that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We cannot however completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of a few tens of M[SUB]⊕[/SUB]. Moreover, we propose a possible structure for the planetary system based on our data, and find that this structure cannot be stable on a long timescale. <P />The reduced images are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/632/A25">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/632/A25</A> <P />Based on observation made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under programs ID 095.C-0298(B), 1100.C-0481(D), 1100.C-0481(L) and 1100.C-0481(M). [less ▲]

Detailed reference viewed: 30 (1 ULiège)
Full Text
Peer Reviewed
See detailSPHERE view of the jet and the envelope of RY Tauri
Garufi, Antonio; Podio, L.; Bacciotti, F. et al

in Astronomy and Astrophysics (2019), 628

Context. Jets are rarely associated with pre-main sequence intermediate- mass stars. This contrasts with the frequent detection of jets in lower mass or younger stars. Optical and near-IR observations of ... [more ▼]

Context. Jets are rarely associated with pre-main sequence intermediate- mass stars. This contrasts with the frequent detection of jets in lower mass or younger stars. Optical and near-IR observations of jet-driving sources are often hindered by the presence of a natal envelope. <BR /> Aims: Jets around partly embedded sources are a useful diagnostic to constrain the geometry of the concealed protoplanetary disk. We intend to clarify how the jet-driving mechanisms are affected by both spatial anisotropies and episodic variations at the (sub-)au scale from the star. <BR /> Methods: We obtained a rich set of high-contrast VLT/SPHERE observations from 0.6 to 2.2 μm of the young intermediate-mass star RY Tau. Given the proximity to the Sun of this source, our images have the highest spatial resolution ever obtained for an atomic jet (down to 4 au). <BR /> Results: Optical observations in polarized light show no sign of the protoplanetary disk detected by ALMA. Instead, we observed a diffuse signal resembling a remnant envelope with an outflow cavity. The jet is detected in the Hα, [S II] at 1.03 μm, He I at 1.08 μm, and [Fe II] lines in the 1.25 μm and 1.64 μm. The jet appears to be wiggling and its radial width increasing with the distance is complementary to the shape of the outflow cavity suggesting a strong interaction with jet and envelope. Through the estimated tangential velocity ( 100 km s[SUP]-1[/SUP]), we revealed a possible connection between the launching time of the jet substructures and the stellar activity of RY Tau. <BR /> Conclusions: RY Tau is at an intermediate stage toward the dispersal of the natal envelope. This source shows episodic increases of mass accretion and ejection similarly to other known intermediate-mass stars. The amount of observed jet wiggle is consistent with the presence of a precessing disk warp or misaligned inner disk that would be induced by an unseen planetary or sub-stellar companion at sub- or few-au scales respectively. The high disk mass of RY Tau and of two other jet-driving intermediate-mass stars, HD 163296 and MWC480, suggests that massive, full disks are more efficient at launching prominent jets. <P />Based on observations performed with VLT/SPHERE under program ID 096.C-0241(C), 096.C-0241(F), 096.C-0248(A), 096.C-0454(A), and 1100.C-0481(A). [less ▲]

Detailed reference viewed: 21 (2 ULiège)
Full Text
Peer Reviewed
See detailTwo cold belts in the debris disk around the G-type star NZ Lupi
Boccaletti, A.; Thébault, P.; Pawellek, N. et al

in Astronomy and Astrophysics (2019), 625

Context. Planetary systems hold the imprint of the formation and of the evolution of planets especially at young ages, and in particular at the stage when the gas has dissipated leaving mostly secondary ... [more ▼]

Context. Planetary systems hold the imprint of the formation and of the evolution of planets especially at young ages, and in particular at the stage when the gas has dissipated leaving mostly secondary dust grains. The dynamical perturbation of planets in the dust distribution can be revealed with high-contrast imaging in a variety of structures. <BR /> Aims: SPHERE, the high-contrast imaging device installed at the VLT, was designed to search for young giant planets in long period, but is also able to resolve fine details of planetary systems at the scale of astronomical units in the scattered-light regime. As a young and nearby star, NZ Lup was observed in the course of the SPHERE survey. A debris disk had been formerly identified with HST/NICMOS. <BR /> Methods: We observed this system in the near-infrared with the camera in narrow and broad band filters and with the integral field spectrograph. High contrasts are achieved by the mean of pupil tracking combined with angular differential imaging algorithms. <BR /> Results: The high angular resolution provided by SPHERE allows us to reveal a new feature in the disk which is interpreted as a superimposition of two belts of planetesimals located at stellocentric distances of 85 and 115 au, and with a mutual inclination of about 5°. Despite the very high inclination of the disk with respect to the line of sight, we conclude that the presence of a gap, that is, a void in the dust distribution between the belts, is likely. <BR /> Conclusions: We discuss the implication of the existence of two belts and their relative inclination with respect to the presence of planets. <P />Reduced images of Fig. 1 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-stras bg.fr">http://cdsarc.u-strasbg.fr</A>(ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/625/A21">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/625/A21</A>Based on data collected at the European Southern Observatory, Chile under programs 097.C-0523, 097.C-0865, 198.C-0209. [less ▲]

Detailed reference viewed: 19 (2 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a planetary-mass companion within the gap of the transition disk around PDS 70
Keppler, M.; Benisty, M.; Müller, A. et al

in Astronomy and Astrophysics (2018), 617

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very ... [more ▼]

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features. <BR /> Aims: In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes. <BR /> Methods: We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes. <BR /> Results: We detect a point source within the gap of the disk at about 195 mas ( 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains. <BR /> Conclusions: The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models. <P />Based on observations performed with ESO Telescopes at the Paranal Observatory under programmes 095.C-0298, 095.C-0404, 096.C-0333, 097.C-0206, 097.C-1001, and 099.C-0891.The reduced images and datacubes are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a brown dwarf companion to the star HIP 64892
Cheetham, A.; Bonnefoy, M.; Desidera, S. et al

in Astronomy and Astrophysics (2018), 615

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup ... [more ▼]

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 ± 0.0023") corresponds to a projected distance of 159 ± 12 AU. We observed the target with the dual-band imaging and long- slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9[SUB]γ[/SUB] ± 1. From comparison with the BT- Settl atmospheric models we estimate an effective temperature of T[SUB]eff[/SUB] = 2600 ± 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of 29-37 M[SUB]J[/SUB] at the estimated age of 16[SUB]-7[/SUB][SUP]+15[/SUP] Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 096.C-0241 and 198.C-0209 (PI: J.-L. Beuzit), 098.A-9007(A) (PI: P. Sarkis), and 087.C-0790(A) (PI: M. Ireland). [less ▲]

Detailed reference viewed: 23 (0 ULiège)
Full Text
Peer Reviewed
See detailThe Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?
Pohl, A.; Benisty, M.; Pinilla, P. et al

in Astrophysical Journal (2017), 850

HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (̃1.2 μm) polarized intensity imaging of HD 169142 with ... [more ▼]

HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (̃1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (̃19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (̃21 au) and 0.″56 (̃66 au) and marginally detect a faint third gap at 0.″70-0.″73 (̃82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a warm, dusty giant planet around HIP 65426
Chauvin, G.; Desidera, S.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2017), 605

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high ... [more ▼]

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. <BR /> Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. <BR /> Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M[SUB]Jup[/SUB], T[SUB]eff[/SUB] = 1300-1600 K and R = 1.5 ± 0.1 R[SUB]Jup[/SUB] giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 R[SUB]Jup[/SUB]). <BR /> Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. <P />Based on observations collected at La Silla and Paranal Observatory, ESO (Chile) Program ID: 097.C-0865 and 098.C-0209 (SPHERE).The planet spectrum is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9</A> [less ▲]

Detailed reference viewed: 20 (0 ULiège)
Full Text
Peer Reviewed
See detailFirst light of the VLT planet finder SPHERE. III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system
Zurlo, A.; Vigan, A.; Galicher, Raphaël et al

in Astronomy and Astrophysics (2016), 587

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these ... [more ▼]

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. <BR /> Aims: We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0-2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. <BR /> Methods: We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94-1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loève image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. <BR /> Results: We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to- noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3-7 M[SUB]Jup[/SUB] . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm. <P />Based on observations collected at the European Southern Observatory (ESO), Chile, during the commissioning of the SPHERE instrument and during the science verification (program number 60.A-9352(A)).Spectra of planets are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/587/A57">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/587/A57</A> [less ▲]

Detailed reference viewed: 29 (3 ULiège)
Full Text
Peer Reviewed
See detailFirst light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Telescopii and HD 1160 revisited
Maire, Anne-Lise ULiege; Bonnefoy, M.; Ginski, C. et al

in Astronomy and Astrophysics (2016), 587

Context. The young systemsPZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder of the Very Large Telescope (VLT) SPHERE with several ... [more ▼]

Context. The young systemsPZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder of the Very Large Telescope (VLT) SPHERE with several imaging and spectroscopic modes. <BR /> Aims: We aim to refine the physical properties and architecture of both systems. <BR /> Methods: We use SPHERE commissioning data and dedicated Rapid Eye Mount (REM) observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. <BR /> Results: We derive new photometry and confirm the short-term (P = 0.94 d) photometric variability of the star PZ Tel A with values of 0.14 and 0.06 mag at optical and near-infrared wavelengths, respectively. We note from the comparison to literature data spanning 38 yr that the star also exhibits a long-term variability trend with a brightening of ~0.25 mag. The 0.63-3.8 μm spectral energy distribution of PZ Tel B (separation ~25 AU) allows us to revise its physical characteristics: spectral type M7 ± 1, T[SUB]eff[/SUB] = 2700 ± 100 K, log(g) < 4.5 dex, luminosity log(L/L[SUB]☉[/SUB]) = -2.51 ± 0.10 dex, and mass 38-72 M[SUB]J[/SUB] from "hot-start" evolutionary models combining the ranges of the temperature and luminosity estimates. The 1-3.8 μm SED of HD 1160 B (~85 au) suggests a massive brown dwarf or a low-mass star with spectral type M6.0, T[SUB]eff[/SUB] = 3000 ± 100 K, subsolar metallicity [M/H] = -0.5-0.0 dex, luminosity log(L/L[SUB]☉[/SUB]) = -2.81 ± 0.10 dex, and mass 39-166 M[SUB]J[/SUB]. The physical properties derived for HD 1160 C (~560 au) from K[SUB]s[/SUB]L'-band photometry are consistent with the discovery study. The orbital study of PZ Tel B confirms its deceleration and the high eccentricity of its orbit (e > 0.66). For eccentricities below 0.9, the inclination, longitude of the ascending node, and time of periastron passage are well constrained. In particular, both star and companion inclinations are compatible with a system seen edge-on. Based on "hot-start" evolutionary models, we reject other brown dwarf candidates outside 0.25'' for both systems, and giant planet companions outside 0.5'' that are more massive than 3 M[SUB]J[/SUB] for the PZ Tel system. We also show that K1-K2 color can be used along with YJH low- resolution spectra to identify young L-type companions, provided high photometric accuracy (≤0.05 mag) is achieved. <BR /> Conclusions: SPHERE opens new horizons in the study of young brown dwarfs and giant exoplanets using direct imaging thanks to high-contrast imaging capabilities at optical (0.5-0.9 μm) and near-infrared (0.95-2.3 μm) wavelengths, as well as high signal-to-noise spectroscopy in the near- infrared domain (0.95-2.3 μm) from low resolutions (R ~ 30-50) to medium resolutions (R ~ 350). <P />Based on data collected at the European Southern Observatory, Chile, during the commissioning of the SPHERE instrument and ESO programs 085.C-0277, 087.C-0109, 087.C-0535, and 060.A-9026. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailFirst light of the VLT planet finder SPHERE. I. Detection and characterization of the substellar companion GJ 758 B
Vigan, A.; Bonnefoy, M.; Ginski, C. et al

in Astronomy and Astrophysics (2016), 587

GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M / H = + 0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has ... [more ▼]

GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M / H = + 0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (~600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K[SUB]s[/SUB]-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T[SUB]eff[/SUB] = 600 ± 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU. <P />Based on observations collected at the European Southern Observatory, Chile, during the commissioning of the SPHERE instrument. [less ▲]

Detailed reference viewed: 24 (1 ULiège)
Full Text
Peer Reviewed
See detailFirst light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799
Bonnefoy, M.; Zurlo, A.; Baudino, J. L. et al

in Astronomy and Astrophysics (2016), 587

Context. The system of fourplanets discovered around the intermediate- mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and ... [more ▼]

Context. The system of fourplanets discovered around the intermediate- mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). <BR /> Aims: In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. <BR /> Methods: We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T[SUB]eff[/SUB], log g, M/H). <BR /> Results: We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T[SUB]eff[/SUB] = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. <BR /> Conclusions: Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H[SUB]2[/SUB] is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses. <P />Based on observations collected at the European Southern Observatory, Chile, during the commissioning of the SPHERE instrument [less ▲]

Detailed reference viewed: 22 (1 ULiège)
Full Text
Peer Reviewed
See detailPerformance of the VLT Planet Finder SPHERE. II. Data analysis and results for IFS in laboratory
Mesa, D.; Gratton, R.; Zurlo, A. et al

in Astronomy and Astrophysics (2015), 576

<BR /> Aims: We present the performance of the Integral Field Spectrograph (IFS) of SPHERE, the high-contrast imager for the ESO VLT telescope designed to perform imaging and spectroscopy of extrasolar ... [more ▼]

<BR /> Aims: We present the performance of the Integral Field Spectrograph (IFS) of SPHERE, the high-contrast imager for the ESO VLT telescope designed to perform imaging and spectroscopy of extrasolar planets, obtained from tests performed at the Institut de Planétologie et d'Astrophysique de Grenoble facility during the integration phase of the instrument. <BR /> Methods: The tests were performed using the instrument software purposely prepared for SPHERE. The output data were reduced applying the SPHERE data reduction and handling software, adding an improved spectral deconvolution procedure. To this aim, we prepared an alternative procedure for the spectral subtraction exploiting the principal component analysis algorithm. Moreover, a simulated angular differential imaging procedure was also implemented to estimate how the instrument performed once this procedure was applied at telescope. The capability of the IFS to faithfully retrieve the spectra of the detected faint companions was also considered. <BR /> Results: We found that the application of the updated version of the spectral deconvolution procedure alone, when the algorithm throughput is properly taken into account, gives us a 5σ limiting contrast of the order of 5 × 10[SUP]-6[/SUP] or slightly better. The further application of the angular differential imaging procedure on these data should allow us to improve the contrast by one order of magnitude down to around 7 × 10[SUP]-7[/SUP] at a separation of 0.3 arcsec. The application of a principal component analysis procedure that simultaneously uses spectral and angular data gives comparable results. Finally, we found that the reproducibility of the spectra of the detected faint companions is greatly improved when angular differential imaging is applied in addition to the spectral deconvolution. [less ▲]

Detailed reference viewed: 32 (0 ULiège)