References of "Reimann, S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUpdate on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol
Engel, A; Rigby, M; Burkholder, J et al

in Fahey, David W; Newman, Paul A; Pyle, John A (Eds.) et al Scientific Assessment of Ozone Depletion: 2018 (2019)

Detailed reference viewed: 96 (18 ULiège)
Full Text
Peer Reviewed
See detailOptimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995
Lejeune, Bernard ULiege; Mahieu, Emmanuel ULiege; Vollmer, M. K. et al

in Journal of Quantitative Spectroscopy and Radiative Transfer (2017), 186

In this paper, we present an optimized retrieval strategy for carbonyl sulfide (OCS), using Fourier transform infrared (FTIR) solar observations made at the high-altitude Jungfraujoch station in the Swiss ... [more ▼]

In this paper, we present an optimized retrieval strategy for carbonyl sulfide (OCS), using Fourier transform infrared (FTIR) solar observations made at the high-altitude Jungfraujoch station in the Swiss Alps. More than 200 lines of the nu3 fundamental band of OCS have been systematically evaluated and we selected 4 microwindows on the basis of objective criteria minimizing the effect of interferences, mainly by solar features, carbon dioxide and water vapor absorption lines, while maximizing the information content. Implementation of this new retrieval strategy provided an extended time series of the OCS abundance spanning the 1995-2015 time period, for the study of the long-term trend and seasonal variation of OCS in the free troposphere and stratosphere. Three distinct periods characterize the evolution of the tropospheric partial columns: a first decreasing period (1995-2002), an intermediate increasing period (2002-2008), and the more recent period (2008-2015) which shows no significant trend. Our FTIR tropospheric and stratospheric time series are compared with new in situ gas chromatography mass spectrometry (GCMS) measurements performed by Empa (Laboratory for Air Pollution/Environmental Technology) at the Jungfraujoch since 2008, and with space-borne solar occultation observations by the ACE-FTS instrument on-board the SCISAT satellite, respectively, and they show good agreement. The OCS signal recorded above Jungfraujoch appears to be closely related to anthropogenic sulfur emissions. [less ▲]

Detailed reference viewed: 92 (34 ULiège)
Full Text
Peer Reviewed
See detailSPARC Report on the Mystery of Carbon Tetrachloride
Ahmadzai, H; Bock, R P; Burkholder, J B et al

in Liang, Qing; Newman, Paul A; Reimann, Stefan (Eds.) SPARC Report on the Mystery of Carbon Tetrachloride (2016)

The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for ... [more ▼]

The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for about 12% of the globally averaged inorganic chlorine and bromine in the stratosphere, compared to 14% for CFC-12 in 2012. In spite of the MP controls, there are large ongoing emissions of CCl4 into the atmosphere. Estimates of emissions from various techniques ought to yield similar numbers. However, the recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg/year (1-4 kilotonnes/year), based on country-by-country reports to UNEP, and a global top-down emissions estimate of 57 Gg/ year, based on atmospheric measurements. This 54 Gg/year difference has not been explained. In order to assess the current knowledge on global CCl4 sources and sinks, stakeholders from industrial, governmental, and the scientific communities came together at the “Solving the Mystery of Carbon Tetrachloride” workshop, which was held from 4-6 October 2015 at Empa in Dübendorf, Switzerland. During this workshop, several new findings were brought forward by the participants on CCl4 emissions and related science. • Anthropogenic production and consumption for feedstock and process agent uses (e.g., as approved solvents) are reported to UNEP under the MP. Based on these numbers, global bottom-up emissions of 3 (0-8) Gg/year are estimated for 2007-2013 in this report. This number is also reasonably consistent with this report’s new industry-based bottom-up estimate for fugitive emissions of 2 Gg/year. • By-product emissions from chloromethanes and perchloroethylene plants are newly proposed in this report as significant CCl4 sources, with global emissions estimated from these plants to be 13 Gg/year in 2014. • This report updates the anthropogenic CCl4 emissions estimation as a maximum of ~25 Gg/year. This number is derived by combining the above fugitive and by-product emissions (2 Gg/year and 13 Gg/year, respectively) with 10 Gg/year from legacy emissions plus potential unreported inadvertent emissions from other sources. • Ongoing atmospheric CCl4 measurements within global networks have been exploited for assessing regional emissions. In addition to existing emissions estimates from China and Australia, the workshop prompted research on emissions in the U.S. and Europe. The sum of these four regional emissions is estimated as 21±7.5a Gg/year, but this is not a complete global accounting. These regional top-down emissions estimates also show that most of the CCl4 emissions originate from chemical industrial regions, and are not linked to major population centres. • The total CCl4 lifetime is critical for calculating top-down global emissions. CCl4 is destroyed in the stratosphere, oceans, and soils, complicating the total lifetime estimate. The atmospheric lifetime with respect to stratospheric loss was recently revised to 44 (36-58) years, and remains unchanged in this report. New findings from additional measurement campaigns and reanalysis of physical parameters lead to changes in the ocean lifetime from 94 years to 210 (157-313) years, and in the soil lifetime from 195 years to 375 (288-536) years. • These revised lifetimes lead to an increase of the total lifetime from 26 years in WMO [2014] to 33 (28-41) years. Consequently, CCl4 is lost at a slower rate from the atmosphere. With this new total lifetime, the global top-down emissions calculation decreases from 57 (40-74) Gg/year in WMO [2014] to 40 (25-55) Gg/year. This estimate is relatively consistent with the independent gradient top-down emissions of 30 (25-35) Gg/year, based upon differences between atmospheric measurements of CCl4 in the Northern and Southern Hemispheres. In addition, this new total lifetime implies an upper limit of 3-4 Gg/year of natural emissions, based upon newly reported observations of old air in firn snow. These new CCl4 emissions estimates from the workshop make considerable progress toward closing the emissions discrepancy. The new industrial bottom-up emissions estimate (15 Gg/year total) includes emissions from chloromethanes plants (13 Gg/year) and feedstock fugitive emissions (2 Gg/year). When combined with legacy emissions and unreported inadvertent emissions, this could be up to 25 Gg/year. Top-down emissions estimates are: global 40 (25-55) Gg/year, gradient 30 (25-35) Gg/year, and regional 21 (14-28) Gg/year. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties. [less ▲]

Detailed reference viewed: 104 (9 ULiège)
Full Text
See detailA Reversal of Long-term Global Trends in Atmospheric Ethane and Propane from North American Oil and Natural Gas Emissions
Helmig, D.; Rossabi, S.; Hueber, J. et al

Conference (2016, May 18)

Ethane, the longest-lived and most abundant non-methane hydrocarbon (NMHC) peaked in the background atmosphere around 1970. This was followed by a ~20% reduction of the atmospheric burden and a resulting ... [more ▼]

Ethane, the longest-lived and most abundant non-methane hydrocarbon (NMHC) peaked in the background atmosphere around 1970. This was followed by a ~20% reduction of the atmospheric burden and a resulting atmospheric downward trend for the next four decades, mostly due to reduced emissions from oil and gas industries and stricter air quality controls. Here, we show that the near 40-year trend of declining global ethane halted between 2005-2010 in most of the Northern Hemisphere (NH), and that since it has reversed. The largest increases in ethane and of the shorter-lived propane are seen in the central and eastern U.S. and immediately downwind, identifying this region as the primary source of increased NMHC emissions. The spatial distribution of observed concentration increases for ethane and propane provides convincing evidence that renewed emissions are primarily associated with the growth of oil and natural gas development in North America. Using source region relationships, emission estimates for increases of co-emitted NMHCs and methane, as well as impacts on tropospheric ozone production have been developed. [less ▲]

Detailed reference viewed: 111 (9 ULiège)
Full Text
Peer Reviewed
See detailUpdate on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol
Carpenter, L. J.; Reimann, S.; Burkholder, J. B. et al

in Nohende Ajavon, Ayité-Lô; Newman, Paul. A.; Pyle, John A. (Eds.) et al Scientific Assessment of Ozone Depletion: 2014 (2014)

The amended and adjusted Montreal Protocol has continued to reduce emissions and atmospheric abundances of most controlled ozone-depleting substances. By 2012, the total combined abundance of ... [more ▼]

The amended and adjusted Montreal Protocol has continued to reduce emissions and atmospheric abundances of most controlled ozone-depleting substances. By 2012, the total combined abundance of anthropogenic ODSs in the troposphere (measured as Equivalent Chlorine) had decreased by nearly 10% from its peak value in 1994. [less ▲]

Detailed reference viewed: 1452 (13 ULiège)
Full Text
Peer Reviewed
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULiege; Stavrakou, T; Muller, J-F et al

in Atmospheric Measurement Techniques (2014), 7

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 111 (38 ULiège)
Full Text
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independent observations
Bader, Whitney ULiege; Stavrakou, J; Muller, J-F et al

Poster (2014, May)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5°N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected 8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995-2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June-July, minimum columns in winter and a peak-to-peak amplitude of 130 %. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 93 (12 ULiège)
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULiege; Zander, Rodolphe ULiege; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 124 (48 ULiège)
Full Text
See detailNMHC Climatology from Central European Mountain Observatories
Plass-Duelmer, C.; Reimann, S.; Wallasch, M. et al

in Geophysical Research Abstracts (2011), 13

NMHC (non-methane hydrocarbons) are a major group of atmospheric trace gases with impact on photochemical processes in the atmosphere, especially oxidant formation with ozone being the most prominent of ... [more ▼]

NMHC (non-methane hydrocarbons) are a major group of atmospheric trace gases with impact on photochemical processes in the atmosphere, especially oxidant formation with ozone being the most prominent of them, and contributions to SOA (secondary organic aerosols). By this, they are coupled to climate issues via the oxidizing capacity of the atmosphere, the greenhouse gas ozone and aerosol effects. NMHC monitoring was initiated in Europe in the “Tropospheric Ozone Research” project (1988-1995), and it was continued in EMEP and GAW (Global Atmosphere Watch) where it is an ongoing initiative which recently has been reinforced (GAW Report 171). In this presentation we will focus on time series from Central European mountain stations (46-49°N, 7-13°E): Hohenpeissenberg (985 m, DWD, Germany, 1998-ongoing), Rigi (1031 m, EMPA, Switzerland, 2003-ongoing), Junfraujoch (3580 m, EMPA, Switzerland, 2000-ongoing, and ULg (FTIR), Belgium, 1984-ongoing), Zugpitze (2650 m, UBA, Germany, 2000-ongoing), Schauinsland (1205 m, FZ-Jülich (1989-94), and UBA, Germany, 2004-ongoing), Brotjacklriegel (1016 m, UBA, Germany, 2000-2004), Donon (775 m, EMD, France, 1997-2007). Most sites used weekly flask samples but also on-line measurements were carried out with higher time resolution within the former TOR project and in the more recent time series at Hohenpeissenberg, Rigi, and Jungfraujoch. All samples were analysed by GC. Additionally to these GC measurements, a time series of column integrated acetylene and ethane by FTIR (Fourier Transform InfraRed spectrometry) is available from Jungfraujoch, from 1984 onwards. We focus here on time series of monthly averages of anthropogenic hydrocarbons over the 1997-2009 time period. They show quite similar patterns among the various stations over the whole period with pronounced seasonal cycles. Significantly lower mixing ratios were measured at the highest elevated sites, the Zugspitze and Jungfraujoch. Differences between the lower mountain sites (775-1200 m) are on first view surprisingly small. Generally, the differences between the high altitude and the other mountain sites are lowest in summer due to enhanced vertical mixing and thermal upslope winds. Downward trends for anthropogenic hydrocarbons are very similar at the various stations and are 2 %/yr for C2-C3 alkanes (+/- 1%), 3-6 %/yr for C4-C7 alkanes (+/- 2%), 2-3%/yr for C2-C3 alkynes and ethene (+/- 2%), 4 % /yr for propene and benzene (+/- 2%), and 5-10%/yr for toluene and xylenes (+/-3 and 5%, respectively). [less ▲]

Detailed reference viewed: 45 (10 ULiège)
Full Text
See detailOzone-Depleting Substances (ODSs) and Related Chemicals (Chapter 1)
Montzka, S. A.; Reimann, S.; Engel, A. et al

in Nohende Ajavon, Ayité-Lô; Newmann, Paul A.; Pyle, John A. (Eds.) et al Scientific Assessment of Ozone Depletion: 2010 (2011)

The amended and adjusted Montreal Protocol continues to be successful at reducing emissions and atmospheric abundances of most controlled ozone-depleting substances (ODSs).

Detailed reference viewed: 203 (13 ULiège)