References of "Queloz, D."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAnalysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using PYCHEOPS
Maxted, P. F. L.; Ehrenreich, D.; Wilson, T. G. et al

in Monthly Notices of the Royal Astronomical Society (2021)

CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that ... [more ▼]

CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that transit nearby stars using ultrahigh precision photometry. Here we report the analysis of transits observed by CHEOPS during its Early Science observing programme for four well-known exoplanets: GJ 436 b, HD 106315 b, HD 97658 b and GJ 1132 b. The analysis is done using PYCHEOPS, an open-source software package we have developed to easily and efficiently analyse CHEOPS light curve data using state-of-the-art techniques that are fully described herein. We show that the precision of the transit parameters measured using CHEOPS is comparable to that from larger space telescopes such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis to derive new constraints on the internal structure of these four exoplanets. [less ▲]

Detailed reference viewed: 24 (8 ULiège)
Full Text
See detailTOI-2257 b: A highly eccentric long-period sub-Neptune transiting a nearby M dwarf
Schanche, N.; Pozuelos, F. J.; Günther, M. N. et al

E-print/Working paper (2021)

Thanks to the relative ease of finding and characterizing small planets around M dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in ... [more ▼]

Thanks to the relative ease of finding and characterizing small planets around M dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs make such objects particularly compelling as they provide clues about the formation and evolution of these systems. In this study, we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit ($e \sim 0.5$), which would make it the most eccentric planet that is known to be transiting an M-dwarf star. We combined TESS and ground-based data obtained with the 1.0-m SAINT-EX, 0.60-m TRAPPIST-North and 1.2-m FLWO telescopes to find a planetary size of 2.2 $R_{\oplus}$ and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. With its long period and high eccentricity, TOI-2257 b falls in a novel slice of parameter space. Despite the planet's low equilibrium temperature ($\sim$ 256 K), its host star's small size ($R_* = 0.311 \pm{0.015}$) and relative infrared brightness (K$_{mag}$ = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailDetecting life outside our solar system with a large high-contrast-imaging mission
Snellen, Ignas A. G.; Snik, F.; Kenworthy, M. et al

in Experimental Astronomy (2021)

In this White Paper, which was submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we recommend the ESA plays a proactive role in developing a global collaborative effort to ... [more ▼]

In this White Paper, which was submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we recommend the ESA plays a proactive role in developing a global collaborative effort to construct a large high-contrast imaging space telescope, e.g. as currently under study by NASA. Such a mission will be needed to characterize a sizable sample of temperate Earth-like planets in the habitable zones of nearby Sun-like stars and to search for extraterrestrial biological activity. We provide an overview of relevant European expertise, and advocate ESA to start a technology development program towards detecting life outside the Solar System. [less ▲]

Detailed reference viewed: 28 (5 ULiège)
Full Text
Peer Reviewed
See detailThe changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS
Szabó, Gy M.; Gandolfi, D.; Brandeker, A. et al

in Astronomy and Astrophysics (2021), 654

AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b ... [more ▼]

AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995 ± 0.000003 d, whereas the stellar rotational period is P[SUB]rot[/SUB] = 4.8367 ± 0.0006 d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs. [less ▲]

Detailed reference viewed: 30 (7 ULiège)
Full Text
Peer Reviewed
See detailThe HARPS search for southern extra-solar planets. XLVI. 12 super-Earths around the solar type stars HD 39194, HD 93385, HD 96700, HD 154088, and HD 189567
Unger, N.; Ségransan, D.; Queloz, D. et al

in Astronomy and Astrophysics (2021), 654

Context. We present precise radial-velocity measurements of five solar-type stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). With a time span of ... [more ▼]

Context. We present precise radial-velocity measurements of five solar-type stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). With a time span of more than 10 yr and a fairly dense sampling, the survey is sensitive to low mass planets down to super-Earths on orbital periods up to 100 days. <BR /> Aims: Our goal was to search for planetary companions around the stars HD 39194, HD 93385, HD 96700, HD 154088, and HD 189567 and use Bayesian model comparison to make an informed choice on the number of planets present in the systems based on the radial velocity observations. These findings will contribute to the pool of known exoplanets and better constrain their orbital parameters. <BR /> Methods: A first analysis was performed using the Data & Analysis Center for Exoplanets online tools to assess the activity level of the star and the potential planetary content of each system. We then used Bayesian model comparison on all targets to get a robust estimate on the number of planets per star. We did this using the nested sampling algorithm POLYCHORD. For some targets, we also compared different noise models to disentangle planetary signatures from stellar activity. Lastly, we ran an efficient Markov chain Monte Carlo algorithm for each target to get reliable estimates for the planets' orbital parameters. <BR /> Results: We identify 12 planets within several multiplanet systems. These planets are all in the super-Earth and sub-Neptune mass regime with minimum masses ranging between 4 and 13 M[SUB]⊕[/SUB] and orbital periods between 5 and 103 days. Three of these planets are new, namely HD 93385 b, HD 96700 c, and HD 189567 c. <P />RV data are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A104">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A104</A> <P />Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope at La Silla Observatory, Chile. [less ▲]

Detailed reference viewed: 20 (1 ULiège)
Full Text
Peer Reviewed
See detailA large sub-Neptune transiting the thick-disk M4 V TOI-2406
Wells, R. D.; Rackham, B. V.; Schanche, N. et al

in Astronomy and Astrophysics (2021), 653

Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets ... [more ▼]

Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims: Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods: We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results: We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties Teff = 3100 ± 75 K, M* = 0.162 ± 0.008M⊙, R* = 0.202 ± 0.011R⊙, and [Fe∕H] = −0.38 ± 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with Rp = 2.94 ± 0.17R⊕ and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3σ, prompting questions about the dynamical history of the system. Conclusions: This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population. [less ▲]

Detailed reference viewed: 39 (6 ULiège)
Full Text
Peer Reviewed
See detailA search for transiting planets around hot subdwarfs: I. Methods and performance tests on light curves from Kepler, K2, TESS, and CHEOPS
Van Grootel, Valérie ULiege; Pozuelos Romero, Francisco José ULiege; Thuillier, Antoine ULiege et al

in Astronomy and Astrophysics (2021), 650

Context. Hot subdwarfs experienced strong mass loss on the red giant branch (RGB) and are now hot and small He-burning objects. These stars constitute excellent opportunities for addressing the question ... [more ▼]

Context. Hot subdwarfs experienced strong mass loss on the red giant branch (RGB) and are now hot and small He-burning objects. These stars constitute excellent opportunities for addressing the question of the evolution of exoplanetary systems directly after the RGB phase of evolution. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based telescopes (Kepler, K2, TESS, and CHEOPS) with our custom-made pipeline SHERLOCK in order to determine the occurrence rate of planets around these stars as a function of orbital period and planetary radius. We also aim to determine whether planets that were previously engulfed in the envelope of their red giant host star can survive, even partially, as a planetary remnant. Methods. For this first paper, we performed injection-and-recovery tests of synthetic transits for a selection of representative Kepler, K2, and TESS light curves to determine which transiting bodies in terms of object radius and orbital period we will be able to detect with our tools. We also provide estimates for CHEOPS data, which we analyzed with the pycheops package. Results. Transiting objects with a radius $\lesssim$ 1.0 $R_{\Earth}$ can be detected in most of the Kepler, K2, and CHEOPS targets for the shortest orbital periods (1~d and shorter), reaching values as low as $\sim$0.3 $R_{\Earth}$ in the best cases. Sub-Earth-sized bodies are only reached for the brightest TESS targets and for those that were observed in a significant number of sectors. We also give a series of representative results for larger planets at greater distances, which strongly depend on the target magnitude and on the length and quality of the data. Conclusions. The TESS sample will provide the most important statistics for the global aim of measuring the planet occurrence rate around hot subdwarfs. The Kepler, K2, and CHEOPS data will allow us to search for planetary remnants, that is, very close and small (possibly disintegrating) objects. [less ▲]

Detailed reference viewed: 82 (17 ULiège)
Full Text
Peer Reviewed
See detailSix transiting planets and a chain of Laplace resonances in TOI-178
Leleu, A.; Alibert, Y.; Hara, N. C. et al

in Astronomy and Astrophysics (2021), 649

Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their ... [more ▼]

Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152‒0.070+0.073 to 2.87‒0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02‒0.23+0.28 to 0.177‒0.061+0.055 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. [less ▲]

Detailed reference viewed: 46 (18 ULiège)
Full Text
Peer Reviewed
See detailCHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii
Bonfanti, A.; Delrez, Laetitia ULiege; Hooton, M. J. et al

in Astronomy and Astrophysics (2021), 646

Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based ... [more ▼]

Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. <BR /> Aims: We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. <BR /> Methods: We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. <BR /> Results: We find that HD 108236 is a Sun-like star with R[SUB]⋆[/SUB] = 0.877 ± 0.008 R[SUB]⊙[/SUB], M[SUB]⋆[/SUB] = 0.869[SUB]-0.048[/SUB][SUP]+0.050[/SUP] M[SUB]⊙[/SUB], and an age of 6.7[SUB]-5.1[/SUB][SUP]+4.0[/SUP] Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539[SUB]-0.065[/SUB][SUP]+0.062[/SUP], 3.083 ± 0.052, and 2.017[SUB]-0.057[/SUB][SUP]+0.052[/SUP] R[SUB]⊕[/SUB] for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. <BR /> Conclusions: The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve. <P />Light curves are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/646/A157">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/646/A157</A> [less ▲]

Detailed reference viewed: 98 (2 ULiège)
Full Text
Peer Reviewed
See detailSPECULOOS: Ultracool dwarf transit survey. Target list and strategy
Sebastian, Daniel ULiege; Gillon, Michaël ULiege; Ducrot, Elsa ULiege et al

in Astronomy and Astrophysics (2021), 645

Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make ... [more ▼]

Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make it possible to carry out a thorough atmospheric characterisation with next-generation telescopes, such as the James Webb Space telescope (JWST) or Extremely Large Telescope (ELT). In this context, the TRAPPIST-1 planets form a unique benchmark system that has garnered the interest of a large scientific community. <BR /> Aims: The SPECULOOS survey is an exoplanet transit survey targeting a volume-limited (40 pc) sample of ultracool dwarf stars (of spectral type M7 and later) that is based on a network of robotic 1 m telescopes especially designed for this survey. The strategy for brighter and earlier targets leverages on the synergy with the ongoing TESS space-based exoplanet transit survey. <BR /> Methods: We define the SPECULOOS target list as the sum of three non-overlapping sub-programmes incorporating the latest type objects (T[SUB]eff[/SUB] ≲ 3000 K). Programme 1 features 365 dwarfs that are small and near enough to make it possible to detail atmospheric characterisation of an `Earth-like' planet with the upcoming JWST. Programme 2 features 171 dwarfs of M5-type and later for which a significant detection of a planet similar to TRAPPIST-1b should be within reach of TESS. Programme 3 features 1121 dwarfs that are later than M6-type. These programmes form the basis of our statistical census of short-period planets around ultracool dwarf stars. <BR /> Results: Our compound target list includes 1657 photometrically classified late-type dwarfs, with 260 of these targets classified, for the first time, as possible nearby ultracool dwarf stars. Our general observational strategy was to monitor each target between 100 and 200 h with our telescope network, making efficient use of the synergy with TESS for our Programme 2 targets and a proportion of targets in our Programme 1. <BR /> Conclusions: Based on Monte Carlo simulations, we expect to detect up to a few dozen temperate, rocky planets. We also expect a number of them to prove amenable for atmospheric characterisation with JWST and other future giant telescopes, which will substantially improve our understanding of the planetary population of the latest-type stars. <P />Catalogue of the sources is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A100">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A100</A> [less ▲]

Detailed reference viewed: 42 (5 ULiège)
Full Text
Peer Reviewed
See detailCHEOPS Precision Phase Curve of the Super-Earth 55 Cnc e
Morris, B. M.; Delrez, Laetitia ULiege; Brandeker, A. et al

in Astronomy and Astrophysics (2021)

55 Cnc e is a transiting super-Earth (radius $1.88\rm\,R_\oplus$ and mass $8\rm\, M_\oplus$) orbiting a G8V host star on a 17-hour orbit. Spitzer observations of the planet's phase curve at 4.5 $\mu$m ... [more ▼]

55 Cnc e is a transiting super-Earth (radius $1.88\rm\,R_\oplus$ and mass $8\rm\, M_\oplus$) orbiting a G8V host star on a 17-hour orbit. Spitzer observations of the planet's phase curve at 4.5 $\mu$m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allows us to study the underlying flux variations of the 55 Cnc system. We detected a phase variation with a full-amplitude of $72 \pm 7$ ppm but do not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian, however the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet but may imply that circumplanetary or circumstellar material modulate the flux of the system. Further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time this year. [less ▲]

Detailed reference viewed: 34 (5 ULiège)
Full Text
Peer Reviewed
See detailSpi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
Hooton, M. J.; Hoyer, S.; Kitzmann, D. et al

in Astronomy and Astrophysics (2021)

The light curves of tidally-locked hot Jupiters transiting fast-rotating, early type stars are a rich source of information about both planet and star, with full-phase coverage enabling a detailed ... [more ▼]

The light curves of tidally-locked hot Jupiters transiting fast-rotating, early type stars are a rich source of information about both planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle $\Psi$, a notoriously difficult parameter to measure, from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of $\Psi$ for some systems. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b. We obtained optical CHEOPS transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 $\mu$m full-phase curve. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of $\Psi=72.1^{+2.5}_{-2.4}$ deg. From the occultations and phase variations we derived dayside and nightside temperatures of $3062^{+66}_{-68}$ K and $1720\pm330$ K, respectively. In addition, we can separately derive geometric albedo $A_g=0.171^{+0.066}_{-0.068}$ and spherical albedo $A_s=0.266^{+0.097}_{-0.100}$ from the CHEOPS data, and Bond albedo $A_B=0.057^{+0.083}_{-0.101}$ from the Spitzer phase curve. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of $\Psi$. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally-resolved JWST phase curve data. [less ▲]

Detailed reference viewed: 27 (8 ULiège)
Full Text
Peer Reviewed
See detailThe EBLM project -- VIII. First results for M-dwarf mass, radius and effective temperature measurements using CHEOPS light curves
Swayne, M. I.; Maxted, P. F. L.; Triaud, A. H. M. J. et al

in Monthly Notices of the Royal Astronomical Society (2021)

Detailed reference viewed: 26 (2 ULiège)
Full Text
Peer Reviewed
See detailExploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets
Borsato, L.; Piotto, G.; Gandolfi, D. et al

in Monthly Notices of the Royal Astronomical Society (2021)

Detailed reference viewed: 28 (2 ULiège)
Full Text
See detailDevelopment of the SPECULOOS exoplanet search project
Sebastian, Daniel ULiege; Pedersen, P. P.; Murray, C. A. et al

in Proceedings of SPIE: The International Society for Optical Engineering (2020, December 01), 11445

SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (< 40 pc) ultracool (< 3000K) dwarf stars. The project's main motivation is to discover ... [more ▼]

SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (< 40 pc) ultracool (< 3000K) dwarf stars. The project's main motivation is to discover potentially habitable planets well-suited for detailed atmospheric characterisation with upcoming giant telescopes, like the James Webb Space Telescope (JWST) and European Large Telescope (ELT). The project is based on a network of 1m robotic telescopes, namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in Tenerife, and the SAINTEx telescope in San Pedro Martir, Mexico. The prototype survey of the SPECULOOS project on the 60 cm TRAPPIST telescope (Chile) discovered the TRAPPIST-1 system, composed of seven temperate Earth-sized planets orbiting a nearby (12 pc) Jupiter-sized star. In this paper, we review the current status of SPECULOOS, its first results, the plans for its development, and its connection to the Transiting Exoplanet Survey Satellite (TESS) and JWST. [less ▲]

Detailed reference viewed: 34 (6 ULiège)
Full Text
Peer Reviewed
See detailThe hot dayside and asymmetric transit of WASP-189b seen by CHEOPS
Lendl, M.; Csizmadia, Sz; Deline, A. et al

in Astronomy and Astrophysics (2020), 643

The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its ... [more ▼]

The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4-4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits. [less ▲]

Detailed reference viewed: 37 (6 ULiège)
Full Text
Peer Reviewed
See detailA super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266
Demory, B.-O.; Pozuelos Romero, Francisco José ULiege; Gómez Maqueo Chew, Y. et al

in Astronomy and Astrophysics (2020), 642

We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 ... [more ▼]

We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Mártir (México). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R = 2.37[SUB]-0.12[/SUB][SUP]+0.16[/SUP] R[SUB]⊕[/SUB] and an orbital period of 10.9 days. The outer, smaller planet has a radius of R = 1.56[SUB]-0.13[/SUB][SUP]+0.15[/SUP] R[SUB]⊕[/SUB] on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of M[SUB]p[/SUB] = 13.5[SUB]-9.0[/SUB][SUP]+11.0[/SUP] M[SUB]⊕[/SUB] (<36.8 M[SUB]⊕[/SUB] at 2-σ) for TOI-1266 b and 2.2[SUB]-1.5[/SUB][SUP]+2.0[/SUP] M[SUB]⊕[/SUB] (<5.7 M[SUB]⊕[/SUB] at 2-σ) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.09[SUB]-0.05[/SUB][SUP]+0.06[/SUP] (<0.21 at 2-σ) for TOI-1266 b and 0.04 ± 0.03 (< 0.10 at 2-σ) for TOI-1266 c. The equilibrium temperatures of both planets are of 413 ± 20 and 344 ± 16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation. [less ▲]

Detailed reference viewed: 42 (3 ULiège)
Full Text
Peer Reviewed
See detailTRAPPIST-1: Global Results of the Spitzer Exploration Science Program Red Worlds
Ducrot, Elsa ULiege; Gillon, Michaël ULiege; Delrez, Laetitia ULiege et al

in Astronomy and Astrophysics (2020), 640(A112), 44

With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf ... [more ▼]

With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven transiting Earth-sized planets, all well-suited for a detailed atmospheric characterization with the upcoming JWST. In this paper, we present the global results of the project. We analyzed 88 new transits and combined them with 100 previously analyzed transits, for a total of 188 transits observed at 3.6 or 4.5 $\mu$m. We also analyzed 29 occultations (secondary eclipses) of planet b and eight occultations of planet c observed at 4.5 $\mu$m to constrain the brightness temperatures of their daysides. We identify several orphan transit-like structures in our Spitzer photometry, but all of them are of low significance. We do not confirm any new transiting planets. We estimate for TRAPPIST-1 transit depth measurements mean noise floors of $\sim$35 and 25 ppm in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC InSb arrays, and that the much better interpixel homogeneity of JWST instruments should result in noise floors as low as 10ppm, which is low enough to enable the atmospheric characterization of the planets by transit transmission spectroscopy. We construct updated broadband transmission spectra for all seven planets which show consistent transit depths between the two Spitzer channels. We identify and model five distinct high energy flares in the whole dataset, and discuss our results in the context of habitability. Finally, we fail to detect occultation signals of planets b and c at 4.5 $\mu$m, and can only set 3$\sigma$ upper limits on their dayside brightness temperatures (611K for b 586K for c). [less ▲]

Detailed reference viewed: 43 (4 ULiège)
Full Text
Peer Reviewed
See detailGlobal analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey
Lienhard, F.; Queloz, D.; Gillon, Michaël ULiege et al

in Monthly Notices of the Royal Astronomical Society (2020), 497(3), 3790

We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 ... [more ▼]

We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 R[SUB]⊕[/SUB] and the orbital period between 1.4 and 1.8 d. [less ▲]

Detailed reference viewed: 37 (4 ULiège)
Full Text
Peer Reviewed
See detailTwo Transiting Hot Jupiters from the WASP Survey: WASP-150b and WASP-176b
Cooke, Benjamin F.; Pollacco, Don; Almleaky, Y. et al

in Astronomical Journal (2020), 159

We report the discovery of two transiting exoplanets from the WASP survey, WASP-150b and WASP-176b. WASP-150b is an eccentric (e = 0.38) hot Jupiter on a 5.6 day orbit around a V = 12.03, F8 main-sequence ... [more ▼]

We report the discovery of two transiting exoplanets from the WASP survey, WASP-150b and WASP-176b. WASP-150b is an eccentric (e = 0.38) hot Jupiter on a 5.6 day orbit around a V = 12.03, F8 main-sequence host. The host star has a mass and radius of 1.4 ${M}_{\odot }$ and 1.7 ${R}_{\odot }$ respectively. WASP-150b has a mass and radius of 8.5 ${M}_{{\rm{J}}}$ and 1.1 R[SUB]J[/SUB], leading to a large planetary bulk density of 6.4 ρ[SUB]J[/SUB]. WASP-150b is found to be ∼3 Gyr old, well below its circularization timescale, supporting the eccentric nature of the planet. WASP-176b is a hot Jupiter planet on a 3.9 day orbit around a V = 12.01, F9 sub-giant host. The host star has a mass and radius of 1.3 M[SUB]☉[/SUB] and 1.9 R[SUB]☉[/SUB]. WASP-176b has a mass and radius of 0.86 M[SUB]J[/SUB] and 1.5 R[SUB]J[/SUB], respectively, leading to a planetary bulk density of 0.23 ρ[SUB]J[/SUB]. [less ▲]

Detailed reference viewed: 43 (4 ULiège)