References of "Por, E"
     in
Bookmark and Share    
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
See detailDesign of the ERIS instrument control software
Baruffolo, A.; Salasnich, B.; Puglisi, A. et al

in Guzman, J.; Ibsen, J. (Eds.) Software and Cyberinfrastructure for Astronomy V (2018, July 06)

The Enhanced Resolution Imager and Spectrograph (ERIS) is a next-generation, adaptive optics assisted, near-IR imager and integral field spectrograph (IFS) for the Cassegrain focus of the Very Large ... [more ▼]

The Enhanced Resolution Imager and Spectrograph (ERIS) is a next-generation, adaptive optics assisted, near-IR imager and integral field spectrograph (IFS) for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4. It will make use of the Adaptive Optics Facility (AOF), comprising the Deformable Secondary Mirror (DSM) and the UT4 Laser Guide Star Facility (4LGSF). It is a rather complex instrument, with its state of the art AO system and two science channels. It is also meant to be a «workhorse» instrument and offers many observation modes. ERIS is being built by a Consortium of European Institutes comprising MPE Garching (D), ATC (UK), ETH Zürich (CH), Leiden University (NL) and INAF (I) in collaboration with ESO. The instrument passed Final Design Review in mid-2017 and is now in the MAIT phase. In this paper we describe the design of the ERIS Instrument Software (INS), which is in charge of controlling all instrument functions and implementing observation, calibration and maintenance procedures. The complexity of the instrument is reflected in the architecture of its control software and the number of templates required for operations. After a brief overview of the Instrument, we describe the general architecture of the ERIS control network and software. We then discuss some of the most interesting aspects of ERIS INS, like the wavefront sensors function control, AO secondary loops, IFS quick-look processing and the on-line processing for high-contrast imaging observations. Finally, we provide some information about our development process, including software quality assurance activities. © 2018 SPIE. [less ▲]

Detailed reference viewed: 48 (1 ULiège)