References of "Peiffer, Raphaël"
     in
Bookmark and Share    
Full Text
See detailMyoferlin, a promising therapeutic target in PDAC, is located in mitochondria-associated membranes
Anania, Sandy ULiege; Boumahd, Yasmine ULiege; Peiffer, Raphaël ULiege et al

Poster (2021, June)

Pancreatic cancer has one of the lowest survival rates with more than 90% of patients dying of the disease. It is predicted that pancreatic cancer will surpass breast cancer death by 2025. Therefore ... [more ▼]

Pancreatic cancer has one of the lowest survival rates with more than 90% of patients dying of the disease. It is predicted that pancreatic cancer will surpass breast cancer death by 2025. Therefore, finding new therapeutic strategies is of major importance. Recently, myoferlin, a protein overexpressed in pancreatic cancer, has been shown to impact mitochondrial dynamics and respiration. Because myoferlin has been showed to be a potential therapeutic target in PDAC, understanding its function and determining its localization in PDAC is of major importance. We focused our interest on mitochondria-associated membranes (MAMs). [less ▲]

Detailed reference viewed: 30 (5 ULiège)
Full Text
Peer Reviewed
See detailMyoferlin is a yet unknown interactor of the mitochondrial dynamics’ machinery in pancreas cancer cells
Anania, Sandy ULiege; Peiffer, Raphaël ULiege; Rademaker, Gilles ULiege et al

in Cancers (2020), 12(6), 1643

Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types ... [more ▼]

Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating to a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenue aiming at modulating mitofusin function in pancreas cancer. [less ▲]

Detailed reference viewed: 122 (34 ULiège)
Full Text
Peer Reviewed
See detailHuman colon cancer cells highly express myoferlin to maintain a fit mitochondrial network and escape p53-driven apoptosis.
Rademaker, Gilles ULiege; Costanza, Brunella ULiege; Bellier, Justine ULiege et al

in Oncogenesis (2019)

Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use ... [more ▼]

Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour-promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anti-cancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer. [less ▲]

Detailed reference viewed: 131 (43 ULiège)
Full Text
Peer Reviewed
See detailMyoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness
Rademaker, Gilles ULiege; Hennequière, Vincent ULiege; Nokin, Marie-Julie ULiege et al

in Oncogene (2018), 37((32)), 4398-4412

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Therapeutic options remain very limited and are based on classical chemotherapies. Energy metabolism ... [more ▼]

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Therapeutic options remain very limited and are based on classical chemotherapies. Energy metabolism reprogramming appears as an emerging hallmark of cancer and is considered a therapeutic target with considerable potential. Myoferlin, a ferlin family member protein overexpressed in PDAC, is involved in plasma membrane biology and has a tumor-promoting function. In the continuity of our previous studies, we investigated the role of myoferlin in the context of energy metabolism in PDAC. We used selected PDAC tumor samples and PDAC cell lines together with small interfering RNA technology to study the role of myoferlin in energetic metabolism. In PDAC patients, we showed that myoferlin expression is negatively correlated with overall survival and with glycolytic activity evaluated by 18F-deoxyglucose positron emission tomography. We found out that myoferlin is more abundant in lipogenic pancreatic cancer cell lines and is required to maintain a branched mitochondrial structure and a high oxidative phosphorylation activity. The observed mitochondrial fission induced by myoferlin depletion led to a decrease of cell proliferation, ATP production, and autophagy induction, thus indicating an essential role of myoferlin for PDAC cell fitness. The metabolic phenotype switch generated by myoferlin silencing could open up a new perspective in the development of therapeutic strategies, especially in the context of energy metabolism. [less ▲]

Detailed reference viewed: 172 (58 ULiège)
Full Text
See detailMyoferlin controls mitochondrial structure in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness
Rademaker, Gilles ULiege; Hennequière, Vincent ULiege; Brohée, Laura ULiege et al

Poster (2017, September 22)

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and the third leading cause of cancer related death. Therapeutic options remain very limited and are still based on ... [more ▼]

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and the third leading cause of cancer related death. Therapeutic options remain very limited and are still based on classical chemotherapies. Cell fraction can survive to the chemotherapy and is responsible for tumor relapse. It appears that these cells rely on OXPHOS for survival. Myoferlin, a membrane protein involved in cell fusion was recently shown by our laboratory to be overexpressed in pancreatic cancer. In the present study, we discovered that myoferlin was more expressed in cell lines undergoing oxidative phosphorylation (OXPHOS) than in glycolytic cell lines. In the former cell lines, we showed that myoferlin silencing reduced OXPHOS activity and forced cells to switch to glycolysis. The decrease in OXPHOS activity is associated with mitochondrial network disorganization. Dynamin-related protein (DRP)-1 phosphorylation led us to suggest mitochondrial fission, reducing cell proliferation, ATP production and inducing autophagy and ROS accumulation. To confirm the clinical importance of myoferlin in PDAC, we showed that low myoferlin expression was significantly correlated to high overall survival. Myoferlin staining of PDAC sections was negatively correlated with several 18FDG PET indices indicating that glycolytic lesions had less myoferlin. As the mitochondrial function is demonstrated to enhance the cell resistance to the treatment, the metabolic switch forced by myoferlin silencing could open up a new perspective in the development of therapeutic strategies. [less ▲]

Detailed reference viewed: 135 (50 ULiège)