References of "Mahy, Laurent"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe long-period massive binary HD 54662 revisited
Mossoux, Enmanuelle ULiege; Mahy, Laurent ULiege; Rauw, Grégor ULiege

in Astronomy and Astrophysics (in press)

Context. HD 54662 is an O-type binary star belonging to the CMa OB1 association. Because of its long-period orbit, this system is an interesting target to test the adiabatic wind shock model. Aims. The ... [more ▼]

Context. HD 54662 is an O-type binary star belonging to the CMa OB1 association. Because of its long-period orbit, this system is an interesting target to test the adiabatic wind shock model. Aims. The goal of this study is to improve our knowledge of the orbital and stellar parameters of HD 54662 and to analyze its X-ray emission to test the theoretical scaling of X-ray emission with orbital separation for adiabatic wind shocks. Methods. We applied a spectral disentangling code to a set of optical spectra to determine the radial velocities and the individual spectra of the primary and secondary stars. The orbital solution of the system was established and the reconstructed individual spectra were analyzed by means of the CMFGEN model atmosphere code. We fitted two X-ray spectra using a Markov Chain Monte Carlo algorithm and compared these spectra to the emission expected from adiabatic shocks. Results. We determine an orbital period of 2103.4 days, a surprisingly low orbital eccentricity of 0.11, and a mass ratio m2/m1 of 0.84. Combined with the orbital inclination inferred in a previous astrometric study, we obtain surprisingly low masses of 9.7 and 8.2 Msun. From the disentangled primary and secondary spectra, we infer O6.5 spectral types for both stars, of which the primary is about two times brighter than the secondary. The softness of the X-ray spectra for the two observations, the very small variation of best-fitting spectral parameters, and the comparison of the X-ray-to-bolometric luminosity ratio with the canonical value for O-type stars allow us to conclude that X-ray emission from the wind interaction region is quite low and that the observed emission is rather dominated by the intrinsic emission from the stars. We cannot confirm the runaway status previously attributed to HD 54662 by computing the peculiar radial and tangential velocities. We find no X-ray emission associated with the bow shock detected in the infrared. Conclusions. The lack of hard X-ray emission from the wind-shock region suggests that the mass-loss rates are lower than expected and/or that the pre-shock wind velocities are much lower than the terminal wind velocities. The bow shock associated with HD 54662 possibly corresponds to a wind-blown arc created by the interaction of the stellar winds with the ionized gas of the CMa OB1 association rather than by a large differential velocity between the binary and the surrounding interstellar medium. [less ▲]

Detailed reference viewed: 20 (2 ULiège)
Full Text
Peer Reviewed
See detailFundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A
Raucq, Françoise ULiege; Rauw, Grégor ULiege; Mahy, Laurent ULiege et al

in Astronomy and Astrophysics (2018), 614

Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. <BR /> Aims: Determining the ... [more ▼]

Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. <BR /> Aims: Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. <BR /> Methods: We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. <BR /> Results: The inner binaries of these systems have eccentric orbits with e 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD 17505Aa are both well inside their Roche lobe, whilst the primary of HD 206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD 206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. <BR /> Conclusions: The CNO abundances and properties of HD 17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD 206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore. Based on observations collected with the TIGRE telescope (La Luz, Mexico), the 1.93 m telescope at Observatoire de Haute Provence (France), the Nordic Optical Telescope at the Observatorio del Roque de los Muchachos (La Palma, Spain), and the Canada-France-Hawaii telescope (Mauna Kea, Hawaii). [less ▲]

Detailed reference viewed: 12 (3 ULiège)
Full Text
Peer Reviewed
See detailA modern study of HD 166734: a massive supergiant system
Mahy, Laurent ULiege; Damerdji, Yassine ULiege; Gosset, Eric ULiege et al

in Astronomy and Astrophysics (2017), 607

Aims: HD 166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve ... [more ▼]

Aims: HD 166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods: An intensive monitoring was dedicated to HD 166734. We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results: HD 166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0° ± 2.7°. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 M[SUB]⊙[/SUB] for the primary and 33.5 M[SUB]⊙[/SUB] for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars. Based on observations collected at the European Southern Observatory (La Silla, Chile) with FEROS and TAROT and on data collected at the San Pedro Mártir observatory (Mexico).The reduced spectra and the light curves are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A96">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A96</A> [less ▲]

Detailed reference viewed: 24 (3 ULiège)
Full Text
Peer Reviewed
See detailAn X-ray view of HD 166734, a massive supergiant system
Nazé, Yaël ULiege; Gosset, Eric ULiege; Mahy, Laurent ULiege et al

in Astronomy and Astrophysics (2017), 607(A97), 1-10

The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like ... [more ▼]

The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like triplets further supports a wind-wind collision as the main source of the X-rays in HD 166734. While temperature and absorption do not vary significantly along the orbit, the X-ray emission strength varies by one order of magnitude, with a long minimum state (Δ(φ) 0.1) occurring after a steep decrease. The flux at minimum is compatible with the intrinsic emission of the O-stars in the system, suggesting a possible disappearance of colliding wind emission. While this minimum cannot be explained by eclipse or occultation effects, a shock collapse may occur at periastron in view of the wind properties. Afterwards, the recovery is long, with an X-ray flux proportional to the separation d (in hard band) or to d[SUP]2[/SUP] (in soft band). This is incompatible with an adiabatic nature for the collision (which would instead lead to F[SUB]X[/SUB] ∝ 1 /d), but could be reconciled with a radiative character of the collision, though predicted temperatures are lower and more variable than in observations. An increase in flux around φ 0.65 and the global asymmetry of the light curve remain unexplained, however. Based on observations collected with Swift and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). [less ▲]

Detailed reference viewed: 18 (3 ULiège)
See detailThe supergiant O + O binary system HD 166734: a new study
Gosset, Eric ULiege; Mahy, Laurent ULiege; Damerdji, Yassine ULiege et al

in The Lives and Death-Throes of Massive Stars (2017, November 01)

We present here a modern study of the radial velocity curve and of the photometric light curve of the very interesting supergiant O7.5If + O9I(f) binary system HD 166734. The physical parameters of the ... [more ▼]

We present here a modern study of the radial velocity curve and of the photometric light curve of the very interesting supergiant O7.5If + O9I(f) binary system HD 166734. The physical parameters of the stars and the orbital parameters are carefully determined. We also perform the analysis of the observed X-ray light curve of this colliding-wind binary. [less ▲]

Detailed reference viewed: 11 (4 ULiège)
Full Text
Peer Reviewed
See detailEvolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5
Mahy, Laurent ULiege; Hutsemekers, Damien ULiege; Nazé, Yaël ULiege et al

in Astronomy and Astrophysics (2017), 599(A61), 17

<BR /> Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a ... [more ▼]

<BR /> Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. <BR /> Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. <BR /> Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile. [less ▲]

Detailed reference viewed: 23 (4 ULiège)
Full Text
Peer Reviewed
See detailObservational signatures of past mass-exchange episodes in massive binaries: the case of LSS 3074
Raucq, Françoise ULiege; Gosset, Eric ULiege; Rauw, Grégor ULiege et al

in Astronomy and Astrophysics (2017), 601

Context. The role of mass and momentum exchanges in close massive binaries is very important in the subsequent evolution of the components. Such exchanges produce several observational signatures such as ... [more ▼]

Context. The role of mass and momentum exchanges in close massive binaries is very important in the subsequent evolution of the components. Such exchanges produce several observational signatures such as asynchronous rotation and altered chemical compositions, that remain after the stars detach again. Aims. We investigated these effects for the close O-star binary LSS 3074 (O4 f + O6-7:(f):), which is a good candidate for a past Roche lobe overflow (RLOF) episode because of its very short orbital period, P = 2.185 days, and the luminosity classes of both components. Methods.We determined a new orbital solution for the system. We studied the photometric light curves to determine the inclination of the orbit and Roche lobe filling factors of both stars. Using phase-resolved spectroscopy, we performed the disentangling of the optical spectra of the two stars.We then analysed the reconstructed primary and secondary spectra with the CMFGEN model atmosphere code to determine stellar parameters, such as the effective temperatures and surface gravities, and to constrain the chemical composition of the components. Results. We confirm the apparent low stellar masses and radii reported in previous studies. We also find a strong overabundance in nitrogen and a strong carbon and oxygen depletion in both primary and secondary atmospheres, together with a strong enrichment in helium of the primary star. Conclusions. We propose several possible evolutionary pathways through a RLOF process to explain the current parameters of the system. We confirm that the system is apparently in overcontact configuration and has lost a significant portion of its mass to its surroundings. We suggest that some of the discrepancies between the spectroscopic and photometric properties of LSS 3074 could stem from the impact of a strong radiation pressure of the primary. [less ▲]

Detailed reference viewed: 31 (10 ULiège)
Full Text
Peer Reviewed
See detailTracing back the evolution of the candidate LBV HD 168625
Mahy, Laurent ULiege; Hutsemekers, Damien ULiege; Royer, P. et al

in Astronomy and Astrophysics (2016), 594

Context. The luminous blue variable phase is a crucial transitory phase that is not clearly understood in the massive star evolution. <BR /> Aims: We have obtained far-infrared Herschel/PACS imaging and ... [more ▼]

Context. The luminous blue variable phase is a crucial transitory phase that is not clearly understood in the massive star evolution. <BR /> Aims: We have obtained far-infrared Herschel/PACS imaging and spectroscopic observations of the nebula surrounding the candidate LBV HD 168625. By combining these data with optical spectra of the central star, we want to constrain the abundances in the nebula and in the star and compare them to trace back the evolution of this object. <BR /> Methods: We use the CMFGEN atmosphere code to determine the fundamental parameters and the CNO abundances of the central star whilst the abundances of the nebula are derived from the emission lines present in the Herschel/PACS spectrum. <BR /> Results: The far-infrared images show a nebula composed of an elliptical ring/torus of ejecta with a ESE-WNW axis and of a second perpendicular bipolar structure composed of empty caps/rings. We detect equatorial shells composed of dust and ionized material with different sizes when observed at different wavelengths, and bipolar caps more of less separated from the central star in Hα and mid-IR images. This complex global structure seems to show two different inclinations: ~40° for the equatorial torus and ~ 60° for the bipolar ejections. From the Herschel/PACS spectrum, we determine nebular abundances of N/H = 4.1 ± 0.8 × 10[SUP]-4[/SUP] and , as well as a mass of ionized gas of 0.17 ± 0.04 M[SUB]⊙[/SUB] and a neutral hydrogen mass of about 1.0 ± 0.3 M[SUB]⊙[/SUB] which dominates. Analysis of the central star reveals T[SUB]eff[/SUB] = 14 000 ± 2000 K, log g = 1.74 ± 0.05 and log (L/L[SUB]⊙[/SUB]) = 5.58 ± 0.11. We derive stellar CNO abundances of about N/H = 5.0 ± 1.5 × 10[SUP]-4[/SUP], C/H = 1.4 ± 0.5 × 10[SUP]-4[/SUP] and O/H = 3.5 ± 1.0 × 10[SUP]-4[/SUP], not significantly different from nebular abundances. All these measurements taken together are compatible with the evolutionary tracks of a star with an initial mass between 28 and 33 M[SUB]⊙[/SUB] and with a critical rotational rate between 0.3 and 0.4 that has lost its material during or just after the blue supergiant phase. Based in part on observations taken by Herschel satellite. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile. [less ▲]

Detailed reference viewed: 31 (9 ULiège)
Full Text
Peer Reviewed
See detailApsidal motion in the massive binary HD 152218
Rauw, Grégor ULiege; Rosu, S.; Noels-Grötsch, Arlette ULiege et al

in Astronomy and Astrophysics (2016), 594(A33), 1-12

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the ... [more ▼]

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M⊙. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04 ± .24)°/yr. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting. [less ▲]

Detailed reference viewed: 40 (4 ULiège)
Full Text
See detailObservational signatures of past mass-exchange episodes in massive binaries : The cases of LSS 3074 and HD 17505
Raucq, Françoise ULiege; Rauw, Grégor ULiege; Gosset, Eric ULiege et al

Poster (2016, July)

Mass and angular momentum exchanges through Roche Lobe Overflow interactions within close massive binaries are known to play an important role in the subsequent evolution of the components of such systems ... [more ▼]

Mass and angular momentum exchanges through Roche Lobe Overflow interactions within close massive binaries are known to play an important role in the subsequent evolution of the components of such systems, and produce several observational signatures, such as asynchronous rotation and altered chemical compositions, that remain once the stars detach again. We have started to investigate these effects in a sample of massive O-star binaries that are thought to have previously experienced a Case A Roche Lobe Overflow episode. Using phase-resolved spectroscopy, we perform the disentangling of the optical spectra of the two stars. The reconstructed primary and secondary spectra re then analysed with the CMFGEN model atmosphere code to determine stellar parameters such as the effective temperatures, surface gravities and rotational velocities, and to constrain the chemical composition of the components. In this contribution, we present the results of our analyses of LSS 3074 (O5.5I + O6.5-7I, P = 2.1852 days), together with the analyses of its photometric lightcurve and orbital solution. We also present the first results of our analyses of the triple system HD17505 ([O7.5V + O7.5V, P = 8.57 days] + O6.5III). [less ▲]

Detailed reference viewed: 46 (4 ULiège)
Full Text
Peer Reviewed
See detailTesting the theory of colliding winds: the periastron passage of 9 Sagittarii. I. X-ray and optical spectroscopy
Rauw, Grégor ULiege; Blomme, R.; Nazé, Yaël ULiege et al

in Astronomy and Astrophysics (2016), 589

Context. The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. <BR /> Aims: Such an ... [more ▼]

Context. The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. <BR /> Aims: Such an event can be used to observationally test the predictions of the theory of colliding stellar winds over a broad range of wavelengths. <BR /> Methods: We conducted a multi-wavelength monitoring campaign of 9 Sgr around the 2013 periastron. In this paper, we focus on X-ray observations and optical spectroscopy. <BR /> Results: The optical spectra allow us to revisit the orbital solution of 9 Sgr and to refine its orbital period to 9.1 years. The X-ray flux is maximum at periastron over all energy bands, but with clear differences as a function of energy. The largest variations are observed at energies above 2 keV, whilst the spectrum in the soft band (0.5-1.0 keV) remains mostly unchanged, indicating that it arises far from the collision region, in the inner winds of the individual components. The level of the hard emission at periastron clearly deviates from the 1 /r relation expected for an adiabatic wind-interaction zone, whilst this relation seems to hold at the other phases that are covered by our observations. The spectra taken at phase 0.946 reveal a clear Fe xxv line at 6.7 keV, but no such line is detected at periastron (φ = 0.000), although a simple model predicts a strong line that should be easily visible in the data. <BR /> Conclusions: The peculiarities of the X-ray spectrum of 9 Sgr could reflect the effect of radiative inhibition as well as a phase-dependent efficiency of particle acceleration on the shock properties. [less ▲]

Detailed reference viewed: 27 (7 ULiège)
Full Text
Peer Reviewed
See detailObservational signatures of past mass-exchange episodes in massive binaries: The case of HD 149 404
Raucq, Françoise ULiege; Rauw, Gregor ULiege; Gosset, Eric ULiege et al

in Astronomy and Astrophysics (2016), 588

Context. Mass and momentum exchanges in close massive binaries play an important role in their evolution, and produce several observational signatures such as asynchronous rotation and altered chemical ... [more ▼]

Context. Mass and momentum exchanges in close massive binaries play an important role in their evolution, and produce several observational signatures such as asynchronous rotation and altered chemical compositions, that remain after the stars detach again. Aims: We investigated these effects for the detached massive O-star binary HD 149 404 (O7.5 If + ON9.7 I, P = 9.81 days), which is thought to have experienced a past episode of case A Roche-lobe overflow (RLOF). Methods: Using phase-resolved spectroscopy, we performed the disentangling of the optical spectra of the two stars. The reconstructed primary and secondary spectra were then analysed with the CMFGEN model atmosphere code to determine stellar parameters, such as the effective temperatures and surface gravities, and to constrain the chemical composition of the components. We complemented the optical study with the study of IUE spectra, which we compare to the synthetic binary spectra. The properties of the stars were compared to evolutionary models. Results: We confirmed a strong overabundance in nitrogen ([N/C] ~ 150[N/C][SUB]⊙[/SUB]) for the secondary and a slight nitrogen overabundance ([N/C] ~ 5[N/C][SUB]⊙[/SUB]) for the primary star. Comparing the two stars, we found evidence for asynchronous rotation, with a rotational period ratio of 0.50 ± 0.11. Conclusions: The hypothesis of a past case A RLOF interaction in HD 149 404 is most plausible to explain its chemical abundances and rotational asynchronicity. Some of the observed properties, such as the abundance pattern, are clearly a challenge for current case A binary evolution models, however. [less ▲]

Detailed reference viewed: 57 (9 ULiège)
Full Text
Peer Reviewed
See detailThe mass of the very massive binary WR21a
Tramper, F.; Sana, H.; Fitzsimons, N. E. et al

in Monthly Notices of the Royal Astronomical Society (2016)

We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the 2011 January periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate ... [more ▼]

We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the 2011 January periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate determination of the orbit and the spectral types of the components. We obtain minimum masses of 64.4±4.8 Msun and 36.3±1.7 Msun for the two components of WR21a. Using disentangled spectra of the individual components, we derive spectral types of O3/WN5ha and O3Vz ((f*)) for the primary and secondary, respectively. Using the spectral type of the secondary as an indication for its mass, we estimate an orbital inclination of i=58.8±2.5° and absolute masses of 103.6±10.2 Msun and 58.3±3.7 Msun, in agreement with the luminosity of the system. The spectral types of the WR21a components indicate that the stars are very young (1–2 Myr), similar to the age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine the mass–luminosity relation for the total system mass. We find that for a distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in good agreement with those from evolutionary predictions. [less ▲]

Detailed reference viewed: 30 (0 ULiège)
Full Text
See detailObservational signatures of past mass-exchange episodes in massive binaries: The cases of HD 149 404 and HD 17505
Raucq, Françoise ULiege; Rauw, Grégor ULiege; Gosset, Eric ULiege et al

Conference (2015, November 30)

Mass and momentum exchanges in close massive binaries play an important role in the evolution of such systems and produce several observational signatures, such as asynchronous rotation and altered ... [more ▼]

Mass and momentum exchanges in close massive binaries play an important role in the evolution of such systems and produce several observational signatures, such as asynchronous rotation and altered chemical compositions, that remain once the stars detach again. We have started to investigate these effects for a sample of detached massive O-star binaries that are thought to have previously experienced a Case A Roche Lobe Overflow. Using phase-resolved spectroscopy, we perform the disentangling of the spectra of the two stars. The reconstructed primary and secondary spectra are then analyzed to determine a range of stellar effective temperatures and gravity, and rotational velocities. Using model atmosphere codes we also constrain the chemical composition of the components. In this contribution, we present the results of our analyses of HD149404 (O7.5If + ON9.5I, P = 9.81 days) and the first results of our analyses of HD17505 ([O7.5V + O7.5V, P = 8.57 days] + O6.5III). [less ▲]

Detailed reference viewed: 44 (4 ULiège)
Full Text
Peer Reviewed
See detailA spectroscopic investigation of the O-type star population in four Cygnus OB associations. II. Determination of the fundamental parameters
Mahy, Laurent ULiege; Rauw, Grégor ULiege; De Becker, Michaël ULiege et al

in Astronomy and Astrophysics (2015), 577

Aims: Having established the binary status of nineteen O-type stars located in four Cygnus OB associations, we now determine their fundamental parameters to constrain their properties and their ... [more ▼]

Aims: Having established the binary status of nineteen O-type stars located in four Cygnus OB associations, we now determine their fundamental parameters to constrain their properties and their evolutionary status. We also investigate their surface nitrogen abundances, which we compare with other results from the literature obtained for galactic O-type stars. Methods: Using optical spectra collected for each object in our sample and some UV data from the archives, we apply the CMFGEN atmosphere code to determine their main properties. For the binary systems, we have disentangled the components to obtain their individual spectra and investigate them as if they were single stars. Results: We find that the distances of several presumably single O-type stars seem poorly constrained because their luminosities are not in agreement with the "standard" luminosities of stars with similar spectral types. The ages of these O-type stars are all less than 7 Myr. Therefore, the ages of these stars agree with those, quoted in the literature, of the four associations, except for Cyg OB8 for which the stars seem older than the association itself. However, we point out that the distance of certain stars is debatable relative to values found in the literature. The N content of these stars put in perspective with N contents of several other galactic O-type stars seems to draw the same five groups as found in the "Hunter" diagram for the O and B-type stars in the LMC even though their locations are obviously different. We determine mass-loss rates for several objects from the Halpha line and UV spectra. Finally, we confirm the "mass discrepancy" especially for O stars with masses smaller than 30 Msun;. [less ▲]

Detailed reference viewed: 47 (4 ULiège)
Full Text
Peer Reviewed
See detailEpoch-dependent absorption line profile variability in lambda Cep
Uuh-Sonda, J. M.; Rauw, Grégor ULiege; Eenens, P. et al

in Revista Mexicana de Astronomia y Astrofisica (2014), 50

We present the analysis of a multi-epoch spectroscopic monitoring campaign of the O6 Ief star lambda Cep. Previous observations reported the existence of two modes of non-radial pulsations in this star ... [more ▼]

We present the analysis of a multi-epoch spectroscopic monitoring campaign of the O6 Ief star lambda Cep. Previous observations reported the existence of two modes of non-radial pulsations in this star. Our data reveal a much more complex situation. The frequency content of the power spectrum considerably changes from one epoch to the other. We find no stable frequency that can unambiguously be attributed to pulsations. The epoch-dependence of the frequencies and variability patterns are similar to what is seen in the wind emission lines of this and other Oef stars, suggesting that both phenomena likely have the same, currently still unknown, origin. [less ▲]

Detailed reference viewed: 14 (2 ULiège)
Full Text
See detailCoRoT Observations of O Stars: Diverse Origins of Variability
Blomme, R.; Briquet, Maryline ULiege; Degroote, P. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these ... [more ▼]

Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these stars (HD 46202 and the binaries HD 46149 and Plaskett's star). These cover both opacity-driven modes and solar-like stochastic oscillations, both of importance to the asteroseismological modeling of O stars. Additional effects can be seen in the CoRoT light curves, such as binarity and rotational modulation. Some of the hottest O-type stars (HD 46223, HD 46150 and HD 46966) are dominated by the presence of red-noise: we speculate that this is related to a sub-surface convection zone. [less ▲]

Detailed reference viewed: 60 (22 ULiège)
Full Text
Peer Reviewed
See detailA spectroscopic investigation of the O-type star population in four Cygnus OB associations. I. Determination of the binary fraction
Mahy, Laurent ULiege; Rauw, Grégor ULiege; De Becker, Michaël ULiege et al

in Astronomy and Astrophysics (2013), 550

Establishing the multiplicity of O-type stars is the first step towards accurately determining their stellar parameters. Moreover, the distribution of the orbital parameters provides observational clues ... [more ▼]

Establishing the multiplicity of O-type stars is the first step towards accurately determining their stellar parameters. Moreover, the distribution of the orbital parameters provides observational clues to the way that O-type stars form and to the interactions during their evolution. Our objective is to constrain the multiplicity of a sample of O-type stars belonging to poorly investigated OB associations in the Cygnus complex and for the first time to provide orbital parameters for binaries identified in our sample. Such information is relevant to addressing the issue of the binarity in the context of O-type star formation scenarios. We performed a long-term pectroscopic survey of nineteen O-type stars. We searched for radial velocity variations to unveil binaries on timescales from a few days up to a few years, on the basis of a large set of optical spectra. We confirm the binarity for four objects: HD193443, HD228989, HD229234 and HD194649. We derive for the first time the orbital solutions of three systems, and we confirm the values of the fourth, showing that these four systems all have orbital periods shorter than 10 days. Besides these results, we also detect several objects that show non-periodic line profile variations in some of their spectral lines. These variations mainly occur in the spectral lines, that are generally affected by the stellar wind and are not likely to be related to binarity. The minimal binary fraction in our sample is estimated to be 21%, but it varies from one OB association to the next. Indeed, 3 O stars of our sample out of 9 (33%) belonging to CygOB1 are binary systems, 0% (0 out of 4) in CygOB3, 0% (0 out of 3) in CygOB8, and 33% (1 out of 3) in CygOB9. Our spectroscopic investigation also stresses the absence of long-period systems among the stars in our sample. This result contrasts with the case of the O-type stellar population in NGC 2244 among which no object showed radial velocity variations on short timescales. However, we show that it is probably an effect of the sample and that this difference does not a priori suggest a somewhat different star forming process in these two environments. [less ▲]

Detailed reference viewed: 21 (2 ULiège)
Full Text
Peer Reviewed
See detailSpectral Modelling of Massive Binary Systems: The Example of LZ Cep
Palate, Matthieu ULiege; Rauw, Grégor ULiege; Mahy, Laurent ULiege

in Central European astrophysical bulletin (2013)

Despite their importance for many astrophysical processes, massive stars are still not fully understood. Massive binaries offer an attractive way to improve our knowledge of the fundamental properties of ... [more ▼]

Despite their importance for many astrophysical processes, massive stars are still not fully understood. Massive binaries offer an attractive way to improve our knowledge of the fundamental properties of these objects. However, some secondary effects are known to generate variations in the spectra of massive binaries, rendering their analyses more difficult. We present here a new approach to the computation of synthetic spectra of massive binaries at different phases of their orbital cycle. Our model starts with the Roche potential modified by radiation pressure and accounts for the influence of the companion star on the shape and physical properties of the stellar surface. We further account for gravity darkening and reflection effects to compute the surface temperature. Once the local gravity and temperature are determined, we interpolate in a grid of NLTE plan-parallel atmosphere model spectra to obtain the local contribution to the spectrum at each surface points. Then we sum all the contributions, accounting for the Doppler shift, and limb-darkening to obtain the total spectrum. The computation is repeated for different orbital phases and can be compared to the observations to determine the best parameters. We illustrate our method through the example of the LZ Cep system (O9III + ON9.7V). [less ▲]

Detailed reference viewed: 26 (4 ULiège)
Full Text
Peer Reviewed
See detailThe 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring
Nazé, Yaël ULiege; Mahy, Laurent ULiege; Damerdji, Yassine ULiege et al

in Astronomy and Astrophysics (2012), 546

Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only ... [more ▼]

Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. <BR /> Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. <BR /> Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. <BR /> Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. <BR /> Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. [less ▲]

Detailed reference viewed: 75 (10 ULiège)