References of "Lavie, B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOrbital and spectral characterization of the benchmark T-type brown dwarf HD 19467B
Maire, Anne-Lise ULiege; Molaverdikhani, K.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 639

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due ... [more ▼]

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with radial velocities and imaging, making it a valuable object for such studies. <BR /> Aims: We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. <BR /> Methods: We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from the instruments HARPS, NaCo, HIRES, UVES, and ASAS. Furthermore, we use proper motion data of the star from HIPPARCOS and Gaia. <BR /> Results: We refined the properties of the host star and derived an age of 8.0[SUP]+2.0[/SUP][SUB]-1.0[/SUB] Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This age estimate is slightly younger than previous age estimates of ~9-11 Gyr based on isochrones. No orbital curvature is seen in the current imaging, radial velocity, and astrometric data. From a joint fit of the data, we refined the orbital parameters for HD 19467B, including: a period of 398[SUP]+95[/SUP][SUB]-93[/SUB] yr, an inclination of 129.8[SUP]+8.1[/SUP][SUB]-5.1[/SUB] deg, an eccentricity of 0.56 ± 0.09, a longitude of the ascending node of 134.8 ± 4.5 deg, and an argument of the periastron of 64.2[SUP]+5.5[/SUP][SUB]-6.3[/SUB] deg. We assess a dynamical mass of 74[SUP]+12[/SUP][SUB]-9[/SUB] M[SUB]J[/SUB]. The fit with atmospheric models of the spectrophotometric data of the companion indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042[SUP]+77[/SUP][SUB]-71[/SUB] K, and a high surface gravity of 5.34[SUP]+0.8[/SUP][SUB]-0.9[/SUB] dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. (1997, ApJ, 491, 856) models; whereas, the other evolutionary models used tend to underestimate its cooling rate. <P />The reduced images shown in Fig. 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47</A> <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 1100.C-0481, 0100.C-0234, 096.C-0602, 072.C-0488, 183.C-0972, 084.D-0965, 188.C-0265, 192.C-0852, and 0100.D-0444. [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailThree short-period Jupiters from TESS. HIP 65Ab, TOI-157b, and TOI-169b
Nielsen, L. D.; Brahm, R.; Bouchy, F. et al

in Astronomy and Astrophysics (2020), 639

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period ... [more ▼]

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078 M[SUB]J[/SUB] planet in a grazing transit configuration with an impact parameter of b = 1.17[SUB]-0.08[/SUB][SUP]+0.10[/SUP]. As a result the radius is poorly constrained, 2.03[SUB]-0.49[/SUB][SUP]+0.61[/SUP]R[SUB]J[/SUB]. The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q[SUB]s[/SUB][SUP]'[/SUP] = 10[SUP]7[/SUP] - 10[SUP]9[/SUP]. We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13 M[SUB]J[/SUB] and a radius of 1.29 ± 0.02 R[SUB]J[/SUB]. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06 M[SUB]J[/SUB] and a radius of 1.09[SUB]-0.05[/SUB][SUP]+0.08[/SUP]R[SUB]J[/SUB]. Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. [less ▲]

Detailed reference viewed: 21 (3 ULiège)
Full Text
Peer Reviewed
See detailCharacterizing brown dwarf companions with IRDIS long-slit spectroscopy: HD 1160 B and HD 19467 B
Mesa, D.; D'Orazi, V.; Vigan, A. et al

in Monthly Notices of the Royal Astronomical Society (2020), 495

The determination of the fundamental properties (mass, separation, age, gravity, and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and ... [more ▼]

The determination of the fundamental properties (mass, separation, age, gravity, and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar companions is available to date only for a limited number of objects (and mostly at very low resolution, R < 50) because of technical limitations, I.e. contrast and angular resolution. We present medium resolution (R = 350), coronagraphic long-slit spectroscopic observations with SPHERE of two substellar companions, HD 1160 B and HD 19467 B. We found that HD 1160 B has a peculiar spectrum that cannot be fitted by spectra in current spectral libraries. A good fit is possible only considering separately the Y+J and the H spectral band. The spectral type is between M5 and M7. We also estimated a T[SUB]eff[/SUB] of 2800-2900 K and a log g of 3.5-4.0 dex. The low surface gravity seems to favour young age (10-20 Myr) and low mass (∼20 M[SUB]Jup[/SUB] ) for this object. HD 19467 B is instead a fully evolved object with a T[SUB]eff[/SUB] of ∼1000 K and log g of ∼5.0 dex. Its spectral type is T6 ± 1. [less ▲]

Detailed reference viewed: 31 (1 ULiège)
Full Text
Peer Reviewed
See detailThree Short Period Jupiters from TESS
Nielsen, L. D.; Brahm, R.; Bouchy, F. et al

E-print/Working paper (2020)

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period ... [more ▼]

We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V=11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 Mjup planet in a grazing transit configuration with impact parameter b = 1.17 +0.10/-0.08. As a result the radius is poorly constrained, 2.03 +0.61/-0.49 Rjup. We perform a full phase-curve analysis of the TESS data and detect both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass 1.18 +/- 0.13 Mjup and radius 1.29 +/- 0.02 Rjup. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V=12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V=12.4 G-type star. It has a mass of 0.79 +/- 0.06 Mjup and radius 1.09 +0.08/-0.05 Rjup. Despite having the longest orbital period (P=2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with Fe/H ranging from 0.18 - 0.24. [less ▲]

Detailed reference viewed: 33 (3 ULiège)
Full Text
Peer Reviewed
See detailOrbital and spectral analysis of the benchmark brown dwarf HD 4747B
Peretti, S.; Ségransan, D.; Lavie, B. et al

in Astronomy and Astrophysics (2019), 631

Context. The study of high-contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or ... [more ▼]

Context. The study of high-contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or spectrum is used and adjusted with model spectra together with the estimated age of the system. These models still need to be properly tested and constrained. HD 4747B is a brown dwarf close to the H burning mass limit, orbiting a nearby (d = 19.25 ± 0.58 pc), solar-type star (G9V); it has been observed with the radial velocity method for over almost two decades. Its companion was also recently detected by direct imaging, allowing a complete study of this particular object. <BR /> Aims: We aim to fully characterize HD 4747B by combining a well-constrained dynamical mass and a study of its observed spectral features in order to test evolutionary models for substellar objects and to characterize its atmosphere. <BR /> Methods: We combined the radial velocity measurements of High Resolution Echelle Spectrometer (HIRES) and CORALIE taken over two decades and high-contrast imaging of several epochs from NACO, NIRC2, and SPHERE to obtain a dynamical mass. From the SPHERE data we obtained a low-resolution spectrum of the companion from Y to H band, and two narrow band-width photometric measurements in the K band. A study of the primary star also allowed us to constrain the age of the system and its distance. <BR /> Results: Thanks to the new SPHERE epoch and NACO archival data combined with previous imaging data and high- precision radial velocity measurements, we were able to derive a well- constrained orbit. The high eccentricity (e = 0.7362 ± 0.0025) of HD 4747B is confirmed, and the inclination and the semi-major axis are derived (i = 47.3 ± 1.6°, a = 10.01 ± 0.21 au). We derive a dynamical mass of m[SUB]B[/SUB] = 70.0 ± 1.6 M[SUB]Jup[/SUB], which is higher than a previous study but in better agreement with the models. By comparing the object with known brown dwarfs spectra, we derive a spectral type of L9 and an effective temperature of 1350 ± 50 K. With a retrieval analysis we constrain the oxygen and carbon abundances and compare them with the values from the HR 8799 planets. <P />Based on observations made with the instrument SPHERE (Prog. ID 198.C-0209) and NaCo (Prog. ID 081.C-0917(A)) at the Paranal observatory and with the CORALIE echelle spectrograph mounted on the 1.2 m Swiss telescope at La Silla Observatory. [less ▲]

Detailed reference viewed: 19 (1 ULiège)
Full Text
Peer Reviewed
See detailThe GJ 504 system revisited. Combining interferometric, radial velocity, and high contrast imaging data
Bonnefoy, M.; Perraut, K.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 618

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories ... [more ▼]

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. <BR /> Aims: We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. <BR /> Methods: We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combinationwith the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE,Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion'sorbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. <BR /> Results: We report a radius of 1.35 ± 0.04 R[SUB]☉[/SUB] for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4.0 ± 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4[SUB]-4.3[/SUB][SUP]+3.8[/SUP] degrees or 186.6[SUB]-3.8[/SUB][SUP]+4.3[/SUP] degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (≤ 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T[SUB]eff[/SUB] = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L[SUB]☉[/SUB] = -6.15 ± 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T[SUB]eff[/SUB] yield masses of M = 1.3[SUB]-0.3[/SUB][SUP]+0.6[/SUP] M[SUB]Jup[/SUB] and M = 23[SUB]-9[/SUB][SUP]+10[/SUP] M[SUB]Jup[/SUB] for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M[SUB]Jup[/SUB] with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. <BR /> Conclusions: The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 093.C-0500, 095.C-0298, 096.C-0241, and 198.C-0209, and on interferometric observations obtained with the VEGA instrument on the CHARA Array. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailImaging radial velocity planets with SPHERE
Zurlo, A.; Mesa, D.; Desidera, S. et al

in Monthly Notices of the Royal Astronomical Society (2018), 480

We present observations with the planet finder Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) of a selected sample of the most promising radial velocity (RV) companions for high-contrast ... [more ▼]

We present observations with the planet finder Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favourable RV systems to observe are: HD 142, GJ 676, HD 39091, HIP 70849, and HD 30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing. To reduce the intensity of the starlight and reveal faint companions, we used principal component analysis algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5σ contrast in the J band versus separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 M[SUB]Jup[/SUB] around these stars, confirming the substellar nature of these RV companions. [less ▲]

Detailed reference viewed: 26 (0 ULiège)
Full Text
Peer Reviewed
See detailIn-depth study of moderately young but extremely red, very dusty substellar companion HD 206893B
Delorme, Philippe; Schmidt, Tobias; Bonnefoy, Mickaël et al

in Astronomy and Astrophysics (2017), 608

Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument ... [more ▼]

Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. <BR /> Aims: We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. <BR /> Methods: We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multi-instrument follow-up of its host star. We obtain a R = 30 spectrum from 0.95 to 1.64 μm of the companion and additional photometry at 2.11 and 2.25 μm. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. <BR /> Results: We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6 M[SUB]Jup[/SUB] (2 M[SUB]Jup[/SUB]) at 0.5'' for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. <BR /> Conclusions: Though our best fit corresponds to a brown dwarf of 15-30 M[SUB]Jup[/SUB] aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12 M[SUB]Jup[/SUB] planetary-mass object to a 50 M[SUB]Jup[/SUB] Hyades-age brown dwarf. Even though this companion is extremely red, we note that it is more probable that it has an intermediate gravity rather than the very low gravity that is often associated with very red L dwarfs. We also find that the detected companion cannot shape the observed outer debris disc, hinting that one or several additional planetary mass objects in the system might be necessary to explain the position of the disc inner edge. Based on observations made with ESO Telescopes at the Paranal Observatory under Programs ID 097.C-0865(D) (SPHERE GTO, SHINE Program) and Program ID: 082.A-9007(A) (FEROS) 098.C-0739(A), 192.C-0224(C) (HARPS). This work has made use of the SPHERE Data Centre. [less ▲]

Detailed reference viewed: 51 (11 ULiège)