References of "Lagadec, E"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSearching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT★
Gratton, R.; Zurlo, A.; Le Coroller, H. et al

in Astronomy and Astrophysics (2020), 638

Context. Proxima Centauri is the closest star to the Sun and it is known to host an Earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities ... [more ▼]

Context. Proxima Centauri is the closest star to the Sun and it is known to host an Earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities. At quadrature, the expected projected separation of this new candidate is larger than 1 arcsec, making it a potentially interesting target for direct imaging. <BR /> Aims: While identification of the optical counterpart of this planet is expected to be very difficult, successful identification would allow for a detailed characterization of the closest planetary system. <BR /> Methods: We searched for a counterpart in SPHERE images acquired over four years through the SHINE survey. In order to account for the expected large orbital motion of the planet, we used a method that assumes the circular orbit obtained from radial velocities and exploits the sequence of observations acquired close to quadrature in the orbit. We checked this with a more general approach that considers Keplerian motion, called K-stacker. <BR /> Results: We did not obtain a clear detection. The best candidate has signal-to-noise ratio (S/N) = 6.1 in the combined image. A statistical test suggests that the probability that this detection is due to random fluctuation of noise is <1%, but this result depends on the assumption that the distribution of noise is uniform over the image, a fact that is likely not true. The position of this candidate and the orientation of its orbital plane fit well with observations in the ALMA 12 m array image. However, the astrometric signal expected from the orbit of the candidate we detected is 3σ away from the astrometric motion of Proxima as measured from early Gaia data. This, together with the unexpectedly high flux associated with our direct imaging detection, means we cannot confirm that our candidate is indeed Proxima c. <BR /> Conclusions: On the other hand, if confirmed, this would be the first observation in imaging of a planet discovered from radial velocities and the second planet (after Fomalhaut b) of reflecting circumplanetary material. Further confirmation observations should be done as soon as possible. <P />The reduced images are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A120">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A120</A> <P />Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.D-0309, 096.C-0241, 096.D-0252, 097.C-0865, 198.C-D0209, 099.D-0098, 099.C-0127. [less ▲]

Detailed reference viewed: 26 (1 ULiège)
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailVLT/SPHERE exploration of the young multiplanetary system PDS70
Mesa, D.; Keppler, M.; Cantalloube, F. et al

in Astronomy and Astrophysics (2019), 632

Context. PDS 70 is a young (5.4 Myr), nearby ( 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a ... [more ▼]

Context. PDS 70 is a young (5.4 Myr), nearby ( 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in H[SUB]α[/SUB] with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. <BR /> Aims: Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. <BR /> Methods: We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g., ANDROMEDA and PACO) to subtract the starlight. <BR /> Results: We re-detect both PDS 70 b and c and confirm that PDS 70 c is gravitationally bound to the star. We estimate this second planet to be less massive than 5 M[SUB]Jup[/SUB] and with a T[SUB]eff[/SUB] around 900 K. Also, it has a low gravity with logg between 3.0 and 3.5 dex. In addition, a third object has been identified at short separation ( 0.12'') from the star and gravitationally bound to the star. Its spectrum is however very blue, meaning that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We cannot however completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of a few tens of M[SUB]⊕[/SUB]. Moreover, we propose a possible structure for the planetary system based on our data, and find that this structure cannot be stable on a long timescale. <P />The reduced images are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/632/A25">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/632/A25</A> <P />Based on observation made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under programs ID 095.C-0298(B), 1100.C-0481(D), 1100.C-0481(L) and 1100.C-0481(M). [less ▲]

Detailed reference viewed: 30 (1 ULiège)
Full Text
Peer Reviewed
See detailRefPlanets: Search for reflected light from extra-solar planets with SPHERE/ZIMPOL
Hunziker, S.; Schmid, H. M.; Mouillet, D. et al

in Astronomy and Astrophysics (2019), in press

RefPlanets is a guaranteed time observation (GTO) programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of SPHERE/VLT for a blind search for exoplanets in wavelengths from 600-900 nm. The goals of ... [more ▼]

RefPlanets is a guaranteed time observation (GTO) programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of SPHERE/VLT for a blind search for exoplanets in wavelengths from 600-900 nm. The goals of this study are the characterization of the unprecedented high polarimetic contrast and polarimetric precision capabilities of ZIMPOL for bright targets, the search for polarized reflected light around some of the closest bright stars to the Sun and potentially the direct detection of an evolved cold exoplanet for the first time. For our observations of Alpha Cen A and B, Sirius A, Altair, Eps Eri and Tau Ceti we used the polarimetric differential imaging (PDI) mode of ZIMPOL which removes the speckle noise down to the photon noise limit for angular separations >0.6". We describe some of the instrumental effects that dominate the noise for smaller separations and explain how to remove these additional noise effects in post-processing. We then combine PDI with angular differential imaging (ADI) as a final layer of post-processing to further improve the contrast limits of our data at these separations. For good observing conditions we achieve polarimetric contrast limits of 15.0-16.3 mag at the effective inner working angle of about 0.13", 16.3-18.3 mag at 0.5" and 18.8-20.4 mag at 1.5". The contrast limits closer in (<0.6") depend significantly on the observing conditions, while in the photon noise dominated regime (>0.6"), the limits mainly depend on the brightness of the star and the total integration time. We compare our results with contrast limits from other surveys and review the exoplanet detection limits obtained with different detection methods. For all our targets we achieve unprecedented contrast limits. Despite the high polarimetric contrasts we are not able to find any additional companions or extended polarized light sources in the data that has been taken so far. [less ▲]

Detailed reference viewed: 15 (2 ULiège)
Full Text
Peer Reviewed
See detailPost-conjunction detection of β Pictoris b with VLT/SPHERE
Lagrange, A.-M.; Boccaletti, A.; Langlois, M. et al

in Astronomy and Astrophysics (2019), 621

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers ... [more ▼]

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to β Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. <BR /> Aims: We aimed at further constraining β Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. <BR /> Methods: We used SPHERE at the VLT to precisely monitor the orbital motion of beta β Pictoris b since first light of the instrument in 2014. <BR /> Results: We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected β Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30° in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 ± 0.5 au (1σ), it definitely excludes previously reported possible long orbital periods, and excludes β Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away. <P />Based on observations collected at the European Southern Observatory under programmes 198.C-0209, 1100.C-0481. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailThe homogeneous internal structure of CM-like asteroid (41) Daphne
Carry, B.; Vachier, F.; Berthier, J. et al

in Astronomy and Astrophysics (2019), 623(A132),

Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been ... [more ▼]

Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy (Vernazza et al., 2016, AJ 152, 154) and numerical modeling of their early thermal evolution (Bland & Travis, 2017, Sci. Adv. 3, e1602514). Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera (ID 199.C-0074, PI P. Vernazza) and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations. We analyzed the dynamics of the satellite with our Genoid meta-heuristic algorithm. Combining our high-angular resolution images with optical lightcurves and stellar occultations, we determine the spin period, orientation, and 3-D shape, using our ADAM shape modeling algorithm. Results. The satellite orbits Daphne on an equatorial, quasi-circular, prograde orbit, like the satellites of many other large main-belt asteroids. The shape model of Daphne reveals several large flat areas that could be large impact craters. The mass determined from this orbit combined with the volume computed from the shape model implies a density for Daphne of 1.77+/-0.26 g/cm3 (3 {\sigma}). This density is consistent with a primordial CM-like homogeneous internal structure with some level of macroporosity (~17%). Conclusions. Based on our analysis of the density of Daphne and 75 other Ch/Cgh-type asteroids gathered from the literature, we conclude that the primordial internal structure of the CM parent bodies was homogeneous. [less ▲]

Detailed reference viewed: 31 (12 ULiège)
Full Text
Peer Reviewed
See detailHigh-contrast study of the candidate planets and protoplanetary disk around HD 100546
Sissa, E.; Gratton, R.; Garufi, Antonio et al

in Astronomy and Astrophysics (2018), 619

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD ... [more ▼]

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD 100546 environment with high-contrast imaging exploiting several different observing modes of SPHERE, including data sets with and without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithm images clearly show the disk up to 200 au. More aggressive algorithms reveal several rings and warped arms that are seen overlapping the main disk. Some of these structures are found to lie at considerable height over the disk mid-plane at about 30 au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at 40 au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure (H/r = 0.18 at 40 au) can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au spans between the 1:2 and 3:2 resonance orbits of a massive body located at 70 au, which mightcoincide with the candidate planet HD 100546b detected with previous thermal infrared (IR) observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD 100546c in our data, we find a diffuse emission close to the expected position of HD 100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane, a result that could be confirmed with new observations. Further observations at various wavelengths are required to fully understand the complex phenomenology of HD 100546. <P />Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.C-0298, 096.C-0241, 096.C-0248, 097.C-0523, 097.C-0865, and 098.C-0209). [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailInvestigating the young solar system analog HD 95086. A combined HARPS and SPHERE exploration
Chauvin, G.; Gratton, R.; Bonnefoy, M. et al

in Astronomy and Astrophysics (2018), 617

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to ... [more ▼]

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. <BR /> Methods: We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. <BR /> Results: We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2[SUP]+0.3[/SUP][SUB]-0.2[/SUB], with a semi-major axis 52 au corresponding to orbital periods of 288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations. <P />Based on observations collected at the European Southern Observatory, Chile (ESO SPHERE Guaranteed Time Observation Program 095.C-0273, 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209) and ESO HARPS Open Time Observation Program 099.C-0205, 192. C-0224. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a brown dwarf companion to the star HIP 64892
Cheetham, A.; Bonnefoy, M.; Desidera, S. et al

in Astronomy and Astrophysics (2018), 615

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup ... [more ▼]

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 ± 0.0023") corresponds to a projected distance of 159 ± 12 AU. We observed the target with the dual-band imaging and long- slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9[SUB]γ[/SUB] ± 1. From comparison with the BT- Settl atmospheric models we estimate an effective temperature of T[SUB]eff[/SUB] = 2600 ± 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of 29-37 M[SUB]J[/SUB] at the estimated age of 16[SUB]-7[/SUB][SUP]+15[/SUP] Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 096.C-0241 and 198.C-0209 (PI: J.-L. Beuzit), 098.A-9007(A) (PI: P. Sarkis), and 087.C-0790(A) (PI: M. Ireland). [less ▲]

Detailed reference viewed: 23 (0 ULiège)
Full Text
Peer Reviewed
See detailAstrometric and photometric accuracies in high contrast imaging: The SPHERE speckle calibration tool (SpeCal)
Galicher, R.; Boccaletti, A.; Mesa, D. et al

in Astronomy and Astrophysics (2018), 615

Context. The consortium of the Spectro-Polarimetric High-contrast Exoplanet REsearch installed at the Very Large Telescope (SPHERE/VLT) has been operating its guaranteed observation time (260 nights over ... [more ▼]

Context. The consortium of the Spectro-Polarimetric High-contrast Exoplanet REsearch installed at the Very Large Telescope (SPHERE/VLT) has been operating its guaranteed observation time (260 nights over five years) since February 2015. The main part of this time (200 nights) is dedicated to the detection and characterization of young and giant exoplanets on wide orbits. <BR /> Aims: The large amount of data must be uniformly processed so that accurate and homogeneous measurements of photometry and astrometry can be obtained for any source in the field. <BR /> Methods: To complement the European Southern Observatory pipeline, the SPHERE consortium developed a dedicated piece of software to process the data. First, the software corrects for instrumental artifacts. Then, it uses the speckle calibration tool (SpeCal) to minimize the stellar light halo that prevents us from detecting faint sources like exoplanets or circumstellar disks. SpeCal is meant to extract the astrometry and photometry of detected point-like sources (exoplanets, brown dwarfs, or background sources). SpeCal was intensively tested to ensure the consistency of all reduced images (cADI, Loci, TLoci, PCA, and others) for any SPHERE observing strategy (ADI, SDI, ASDI as well as the accuracy of the astrometry and photometry of detected point-like sources. <BR /> Results: SpeCal is robust, user friendly, and efficient at detecting and characterizing point-like sources in high contrast images. It is used to process all SPHERE data systematically, and its outputs have been used for most of the SPHERE consortium papers to date. SpeCal is also a useful framework to compare different algorithms using various sets of data (different observing modes and conditions). Finally, our tests show that the extracted astrometry and photometry are accurate and not biased. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0865. [less ▲]

Detailed reference viewed: 17 (0 ULiège)
Full Text
Peer Reviewed
See detailObservations of fast-moving features in the debris disk of AU Mic on a three-year timescale: Confirmation and new discoveries
Boccaletti, A.; Sezestre, E.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 614

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other ... [more ▼]

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. <BR /> Aims: We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. <BR /> Methods: AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. <BR /> Results: The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s[SUP]-1[/SUP]); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40'' and 0.55'' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4'' from the star (as of May 2016). <BR /> Conclusions: Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars. <P />Based on data collected at the European Southern Observatory, Chile under programs 060.A-9249, 095.C-0298, 096.C-0625, 097.C-0865, 097.C-0813, 598.C-0359.A movie associated to Fig. 6 is available at <A h ref="https://www.aanda.org/10.1051/0004-6361/201732462/olm">http://https ://www.aanda.org</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailNew spectro-photometric characterization of the substellar object HR 2562 B using SPHERE
Mesa, D.; Baudino, J.-L.; Charnay, B. et al

in Astronomy and Astrophysics (2018), 612

<BR /> Aims: HR 2562 is an F5V star located at 33 pc from the Sun hosting a substellar companion that was discovered using the Gemini planet imager (GPI) instrument. The main objective of the present ... [more ▼]

<BR /> Aims: HR 2562 is an F5V star located at 33 pc from the Sun hosting a substellar companion that was discovered using the Gemini planet imager (GPI) instrument. The main objective of the present paper is to provide an extensive characterization of the substellar companion, by deriving its fundamental properties. <BR /> Methods: We observed HR 2562 with the near-infrared branch composed by the integral field spectrograph (IFS) and the infrared dual band spectrograph (IRDIS) of the spectro-polarimetric high-contrast exoplanet research (SPHERE) instrument at the very large telescope (VLT). During our observations IFS was operating in the Y J band, while IRDIS was observing with the H broadband filter. The data were reduced with the dedicated SPHERE GTO pipeline, which is custom designed for this instrument. On the reduced images, we then applied the post-processing procedures that are specifically prepared to subtract the speckle noise. <BR /> Results: The companion is clearly detected in both IRDIS and IFS datasets. We obtained photometry in three different spectral bands. The comparison with template spectra allowed us to derive a spectral type of T2-T3 for the companion. Using both evolutionary and atmospheric models we inferred the main physical parameters of the companion obtaining a mass of 32 ± 14 M[SUB]Jup[/SUB], T[SUB]eff[/SUB] = 1100 ± 200 K, and log g = 4.75 ± 0.41. <P />Based on observations made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under program ID 198.C-0209(D). [less ▲]

Detailed reference viewed: 25 (0 ULiège)
Full Text
See detailVLTI/GRAVITY observations of the young star βPictoris
Defrere, Denis ULiege; Di Matteo, P.; Herpin, F. et al

in SF2A-2017: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2017, December 01)

The nearby young star β Pictoris is surrounded by the archetypal debris disc, which provides a unique window on the formation and early evolution of terrestrial planets. While the outer disc has been ... [more ▼]

The nearby young star β Pictoris is surrounded by the archetypal debris disc, which provides a unique window on the formation and early evolution of terrestrial planets. While the outer disc has been extensively studied since its discovery in 1984, very little is currently known about the inner planetary system (<4AU). Recently, accurate squared visibilities obtained with VLTI/PIONIER revealed the presence of resolved circumstellar emission with an integrated brightness amounting to approximately 1.4% of the stellar brightness in H band. However, it is not clear whether this excess emission originates from thermal emission, reflected light from hot dust grains located in the innermost regions of the planetary system, or is simply due to forward scattering by dust grains located further away (but still within the PIONIER field-of-view, i.e., close to the line of sight). In this paper, we present medium-resolution K-band observations of βPic obtained with VLTI/GRAVITY during science verification. The goals of these observations are to better constrain the temperature of the grains (and hence their location and chemical composition) and to showcase the high-precision capabilities of GRAVITY at detecting faint, close-in circumstellar emission. [less ▲]

Detailed reference viewed: 12 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a warm, dusty giant planet around HIP 65426
Chauvin, G.; Desidera, S.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2017), 605

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high ... [more ▼]

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. <BR /> Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. <BR /> Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M[SUB]Jup[/SUB], T[SUB]eff[/SUB] = 1300-1600 K and R = 1.5 ± 0.1 R[SUB]Jup[/SUB] giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 R[SUB]Jup[/SUB]). <BR /> Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. <P />Based on observations collected at La Silla and Paranal Observatory, ESO (Chile) Program ID: 097.C-0865 and 098.C-0209 (SPHERE).The planet spectrum is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9</A> [less ▲]

Detailed reference viewed: 20 (0 ULiège)