References of "Krimigis, S. M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA radiation belt of energetic protons located between Saturn and its rings
Roussos, E.; Kollmann, P.; Krupp, N. et al

in Science (2018), 362

Detailed reference viewed: 18 (5 ULiège)
Full Text
Peer Reviewed
See detailHeliospheric conditions at Saturn during Cassini's Ring-Grazing and Proximal Orbits
Roussos, E.; Krupp, N.; Paranicas, C. et al

in Geophysical Research Letters (2018), 45

Detailed reference viewed: 34 (4 ULiège)
Full Text
Peer Reviewed
See detailQuasi-periodic injections of relativistic electrons in Saturn's outer magnetosphere
Roussos, E.; Krupp, N.; Mitchell, D. G. et al

in Icarus (2016), 263

Detailed reference viewed: 32 (4 ULiège)
Full Text
Peer Reviewed
See detailRecurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
Mitchell, D. G.; Krimigis, S. M.; Paranicas, C. et al

in Planetary and Space Science (2009), 57

We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although ... [more ▼]

We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close to Saturn's rotation period usually recur in the same magnetospheric location. We suggest that these events result from current sheet acceleration in the 15-20 Rs range, probably associated with reconnection and plasmoid formation in Saturn's magnetotail. Simultaneous auroral observations by the Hubble Space Telescope (HST) and the Cassini Ultraviolet Imaging Spectrometer (UVIS) suggest a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent ENA enhancements coincide closely with bursts of Saturn kilometric radiation, again pointing to possible linkage with high latitude auroral processes. We argue that the rotating azimuthal asymmetry of the ring current pressure revealed in the ENA images creates an associated rotating field aligned current system linking to the ionosphere and driving the correlated auroral processes. [less ▲]

Detailed reference viewed: 44 (8 ULiège)
See detailCoordinated measurements of auroral processes at Saturn from the Cassini spacecraft and HST
Mitchell, D. G.; Kurth, William; Hospodarsky, G. B. et al

Conference (2008, December 01)

One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents ... [more ▼]

One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents, relationship with solar wind pressure and magnetic field, and its large scale mapping to the magnetosphere. By design, the Cassini orbital tour included high inclination and low periapsis orbits late in the prime mission specifically to address many of these topics. In this presentation, we will provide a snapshot of the current state of our investigation into the relationship between magnetospheric measurements of particles and fields, and the aurora. For in situ data, we will show measurements of upward traveling light ion conics (~30 keV to 200 keV), often accompanied by electron beams (<20 keV to ~1 MeV) and enhanced broadband noise (10 Hz to a few kHz), throughout the outer magnetosphere on field lines that nominally map from well into the polar cap (dipole L > 50) to well into the closed field region (dipole L < 10). Sometimes the particle phenomena and the broadband noise occur in pulses of roughly five-minute duration, separated by tens of minutes. At other times they are relatively steady over an hour or more. Magnetic signatures associated with some of the pulsed events are consistent with field aligned current structures. Correlative observations of solar wind (Cassini) and aurora (HST) have established a strong relationship between solar wind pressure and auroral activity (brightness) (Crary et al., Nature, 2005; Clarke et al., JGR, 2008). A similar correspondence between bright auroral arcs and ring current ion acceleration will be shown here. So while some auroral forms seem to be associated with the open/closed field boundary (i.e. in the cusp-Bunce et al., JGR, 2008), we also demonstrate that under some magnetospheric conditions for which protons and oxygen ions are accelerated once per Saturn magnetosphere rotation at a preferred local time between midnight and dawn, simultaneous auroral observations by the HST reveal a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent energetic neutral atom enhancements coincide closely with bursts of Saturn kilometric radiation, again suggesting a linkage with high latitude auroral processes. Finally, we will show some intriguing results of auroral movie sequences from the Cassini UVIS instrument with corresponding ring current movies from the Magnetospheric Imaging Instrument Ion and Neutral Camera (MIMI/INCA). [less ▲]

Detailed reference viewed: 55 (6 ULiège)