References of "Kreukels, Baudewijntje P. C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBrain functional connectivity patterns in children and adolescents with gender dysphoria: Sex-atypical or not?
Nota, Nienke M.; Kreukels, Baudewijntje P. C.; den Heijer, Martin et al

in Psychoneuroendocrinology (2017), 86

Various previous studies have reported that brains of people diagnosed with gender dysphoria (GD) show sex-atypical features. In addition, recent functional magnetic resonance imaging studies found that ... [more ▼]

Various previous studies have reported that brains of people diagnosed with gender dysphoria (GD) show sex-atypical features. In addition, recent functional magnetic resonance imaging studies found that several brain resting-state networks (RSNs) in adults with GD show functional connectivity (FC) patterns that are not sex-atypical, but specific for GD. In the current study we examined whether FC patterns are also altered in prepubertal children and adolescents with GD in comparison with non-gender dysphoric peers. We investigated FC patterns within RSNs that were previously examined in adults: visual networks (VNs), sensorimotor networks (SMNs), default mode network (DMN) and salience network. Thirty-one children (18 birth assigned males; 13 birth assigned females) and 40 adolescents with GD (19 birth assigned males or transgirls; 21 birth assigned females or transboys), and 39 cisgender children (21 boys; 18 girls) and 41 cisgender adolescents (20 boys; 21 girls) participated. We used independent component analysis to obtain the network maps of interest and compared these across groups. Within one of the three VNs (VN-I), adolescent transgirls showed stronger FC in the right cerebellum compared with all other adolescent groups. Sex differences in FC between the cisgender adolescent groups were observed in the right supplementary motor area within one of the two SMNs (SMN-II; girls>boys) and the right posterior cingulate gyrus within the posterior DMN (boys>girls). Within these networks adolescent transgirls showed FC patterns similar to their experienced gender (female). Also adolescent transboys showed a FC pattern similar to their experienced gender (male), but within the SMN-II only. The prepubertal children did not show any group differences in FC, suggesting that these emerge with aging and during puberty. Our findings provide evidence for the existence of both GD-specific and sex-atypical FC patterns in adolescents with GD. [less ▲]

Detailed reference viewed: 160 (1 ULiège)
Full Text
Peer Reviewed
See detailMale-typical visuospatial functioning in gynephilic girls with gender dysphoria - organizational and activational effects of testosterone.
Burke, Sarah M.; Kreukels, Baudewijntje P. C.; Cohen-Kettenis, Peggy T. et al

in Journal of psychiatry & neuroscience : JPN (2016), 41(4), 150147

BACKGROUND: Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We ... [more ▼]

BACKGROUND: Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We investigated whether adolescent girls with gender dysphoria (GD), before and after 10 months of testosterone treatment, showed male-typical brain activity during a mental rotation task (MRT). METHODS: Girls with GD underwent fMRI while performing the MRT twice: when receiving medication to suppress their endogenous sex hormones before onset of testosterone treatment, and 10 months later during testosterone treatment. Two age-matched control groups participated twice as well. RESULTS: We included 21 girls with GD, 20 male controls and 21 female controls in our study. In the absence of any group differences in performance, control girls showed significantly increased activation in frontal brain areas compared with control boys (pFWE = 0.012). Girls with GD before testosterone treatment differed significantly in frontal brain activation from the control girls (pFWE = 0.034), suggesting a masculinization of brain structures associated with visuospatial cognitive functions. After 10 months of testosterone treatment, girls with GD, similar to the control boys, showed increases in brain activation in areas implicated in mental rotation. LIMITATIONS: Since all girls with GD identified as gynephilic, their resemblance in spatial cognition with the control boys, who were also gynephilic, may have been related to their shared sexual orientation rather than their shared gender identity. We did not account for menstrual cycle phase or contraceptive use in our analyses. CONCLUSION: Our findings suggest atypical sexual differentiation of the brain in natal girls with GD and provide new evidence for organizational and activational effects of testosterone on visuospatial cognitive functioning. [less ▲]

Detailed reference viewed: 112 (2 ULiège)
Full Text
Peer Reviewed
See detailPuberty suppression and executive functioning: An fMRI-study in adolescents with gender dysphoria.
Staphorsius, Annemieke S.; Kreukels, Baudewijntje P. C.; Cohen-Kettenis, Peggy T. et al

in Psychoneuroendocrinology (2015), 56

Adolescents with gender dysphoria (GD) may be treated with gonadotropin releasing hormone analogs (GnRHa) to suppress puberty and, thus, the development of (unwanted) secondary sex characteristics. Since ... [more ▼]

Adolescents with gender dysphoria (GD) may be treated with gonadotropin releasing hormone analogs (GnRHa) to suppress puberty and, thus, the development of (unwanted) secondary sex characteristics. Since adolescence marks an important period for the development of executive functioning (EF), we determined whether the performance on the Tower of London task (ToL), a commonly used EF task, was altered in adolescents with GD when treated with GnRHa. Furthermore, since GD has been proposed to result from an atypical sexual differentiation of the brain, we determined whether untreated adolescents with GD showed sex-atypical brain activations during ToL performance. We found no significant effect of GnRHa on ToL performance scores (reaction times and accuracy) when comparing GnRHa treated male-to-females (suppressed MFs, n=8) with untreated MFs (n=10) or when comparing GnRHa treated female-to-males (suppressed FMs, n=12) with untreated FMs (n=10). However, the suppressed MFs had significantly lower accuracy scores than the control groups and the untreated FMs. Region-of-interest (ROI) analyses showed significantly greater activation in control boys (n=21) than control girls (n=24) during high task load ToL items in the bilateral precuneus and a trend (p<0.1) for greater activation in the right DLPFC. In contrast, untreated adolescents with GD did not show significant sex differences in task load-related activation and had intermediate activation levels compared to the two control groups. GnRHa treated adolescents with GD showed sex differences in neural activation similar to their natal sex control groups. Furthermore, activation in the other ROIs (left DLPFC and bilateral RLPFC) was also significantly greater in GnRHa treated MFs compared to GnRHa treated FMs. These findings suggest that (1) GnRHa treatment had no effect on ToL performance in adolescents with GD, and (2) pubertal hormones may induce sex-atypical brain activations during EF in adolescents with GD. [less ▲]

Detailed reference viewed: 40 (1 ULiège)
Full Text
Peer Reviewed
See detailRegional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.
Hoekzema, Elseline; Schagen, Sebastian E. E.; Kreukels, Baudewijntje P. C. et al

in Psychoneuroendocrinology (2015), 55C

The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine ... [more ▼]

The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. [less ▲]

Detailed reference viewed: 190 (4 ULiège)