References of "Karatekin, O"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMartian dust storm impact on atmospheric H 2 O and D/H observed by ExoMars Trace Gas Orbiter
Vandaele, A. C.; Korablev, O.; Daerden, F. et al

in Nature (2019), 568

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to ... [more ▼]

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to solar heating of the dust 3 . In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars 4 . Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes 5,6 , as well as a decrease in the water column at low latitudes 7,8 . Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H 2 O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H 2 O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals 3 . The observed changes in H 2 O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere. © 2019, The Author(s), under exclusive licence to Springer Nature Limited. [less ▲]

Detailed reference viewed: 19 (4 ULiège)
Full Text
Peer Reviewed
See detailNo detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
Korablev, O.; Vandaele, A. C.; Montmessin, F. et al

in Nature (2019), 568

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of ... [more ▼]

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations 2–5 . These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere 6,7 , which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane 1,6,8 . Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections 2,4 . We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater 4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally. [less ▲]

Detailed reference viewed: 16 (3 ULiège)
Full Text
Peer Reviewed
See detailThe Castalia mission to Main Belt Comet 133P/Elst-Pizarro
Snodgrass, C.; Jones, G. H.; Boehnhardt, H. et al

in Advances in Space Research (2018), 62

We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt ... [more ▼]

We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC's activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA's highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these. [less ▲]

Detailed reference viewed: 30 (5 ULiège)
Full Text
Peer Reviewed
See detailNOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
Vandaele, A. C.; Lopez-Moreno, J.-J.; Patel, M. R. et al

in Space Science Reviews (2018), 214

The NOMAD ("Nadir and Occultation for MArs Discovery") spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars' atmosphere, with a ... [more ▼]

The NOMAD ("Nadir and Occultation for MArs Discovery") spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars' atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity. [less ▲]

Detailed reference viewed: 29 (11 ULiège)
Full Text
Peer Reviewed
See detailThe science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets
Arridge, C. S.; Achilleos, N.; Agarwal, J. et al

in Planetary and Space Science (2014), (0), -

Abstract Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice ... [more ▼]

Abstract Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. [less ▲]

Detailed reference viewed: 36 (3 ULiège)
Full Text
Peer Reviewed
See detailPlanet TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of Their Reservoirs
Dehant, V.; Van Hoolst, T.; Breuer, D. et al

in Geophysical Research Abstracts (2013, April), 15

An overview is given of the Planet TOPERS project addressing habitability in our solar system.

Detailed reference viewed: 69 (8 ULiège)
See detailThe Sun-earth Imbalance radiometer for a direct measurement of the net heating of the Earth
Dewitte, S; Chevalier, A; Meftah, M et al

Conference (2012)

Although it is generally accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly ... [more ▼]

Although it is generally accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude – of the order of 340 W/m² – resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. By reanalyzing data from the NASA LARC Earth Radiation Budget Experiment, we have been able to demonstrate that the sampling problem can be overcome, even with the low resolution Wide Field of View radiometer. We have combined the measurements of the precessing ERBS satellite for midlatitude and equatorial regions with measurements of the sun synchronuous NOAA9 satellite for the polar regions. For the accuracy requirement an improved instrument design is needed. We propose a new instrument, which we call the Sun-earth IMBAlance (SIMBA) radiometer. It is an improved wide field of view cavity radiometer based on our long experience with the DIARAD type of instrument for the measurement of Total Solar Irradiance. Currently we have two DIARAD instruments in space, on SOHO and on the ISS, and a third one will be launched this year on the Picard microsatellite. In this paper, we will present the ERBE sampling study and the SIMBA instrument and nanosatellite design [less ▲]

Detailed reference viewed: 57 (3 ULiège)
See detailSpace Geodesy at the Royal Observatory of Belgium
Beuthe, Michaël; Bruyninx, Carine; Carpentier, Georges et al

in COSPAR report Period 2002-2003 (2004)

Detailed reference viewed: 57 (1 ULiège)