References of "Jérôme, Christine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFast and facile one-pot one-step preparation of non-isocyanate polyurethane hydrogels in water at room temperature
Bourguignon, Maxime ULiege; Thomassin, Jean-Michel ULiege; Grignard, Bruno ULiege et al

in ACS Sustainable Chemistry and Engineering (in press)

Since the discovery of polyurethanes (PU) by Otto Bayer in 1937, PU hydrogels are still commonly produced by the polyaddition of nasty and toxic polyisocyanates with polyols in organic solvents or in the ... [more ▼]

Since the discovery of polyurethanes (PU) by Otto Bayer in 1937, PU hydrogels are still commonly produced by the polyaddition of nasty and toxic polyisocyanates with polyols in organic solvents or in the bulk, followed by their swelling in water. Their direct one-pot one-step synthesis in water is not possible due to the fast hydrolysis of isocyanates. The attractive greener variant for PU that consists in the polyaddition of poly(5-membered cyclic carbonate)s with polyamines is also suffering for a similar drawback (the hydrolysis of the cyclic carbonates), but also for the low reactivity of the reagents at room temperature. Herein, we report the first synthesis of PU hydrogels by a non-isocyanate route in water at room temperature from easily accessible CO2-sourced 5-membered cyclic carbonates (5CCs) and a commercially available polyamine. We demonstrate that PU hydrogels are now formed with impressive short gel times (15-20 min) provided that the pH is adjusted in the 10.5-11.5 range in order to limit 5CCs hydrolysis. Hydrogels of good mechanical properties and high swelling ability are prepared in a facile one-pot process. The robustness of the process is also illustrated by dispersing clays (natural or synthetic) or a natural hydrosoluble polymer (gelatin) in the formulation. These additives do not perturb the polymerization and enable to modulate the mechanical properties of the hydrogel. This works opens enormous perspectives in the design of elusive PU-based materials in water from largely accessible 5- membered cyclic carbonates. [less ▲]

Detailed reference viewed: 13 (1 ULiège)
Full Text
Peer Reviewed
See detailA switchable domino process for the construction of novel CO2- sourced sulfur-containing building blocks and polymers
Ouhib, Farid; Grignard, Bruno ULiege; Van den Broeck, Elias et al

in Angewandte Chemie International Edition (in press)

alpha-alkylidene cyclic carbonates (aCCs) recently emerged as attractive CO2-sourced synthons for the construction of complex organic molecules. Herein, we report the transformation of aCCs into novel ... [more ▼]

alpha-alkylidene cyclic carbonates (aCCs) recently emerged as attractive CO2-sourced synthons for the construction of complex organic molecules. Herein, we report the transformation of aCCs into novel families of sulfur-containing compounds by organocatalyzed chemoselective addition of thiols, following a domino process that is switched on/off depending on the desired product. The process is extremely fast, versatile in substrate scope, provides selectively linear thiocarbonates or elusive tetrasubstituted ethylene carbonates with high yields following a 100% atom economy reaction, and valorizes CO2 as a renewable feedstock. It is also exploited to produce a large diversity of unprecedented functional polymers. It constitutes a robust platform for the design of new sulfur-containing organic synthons and important families of polymers. [less ▲]

Detailed reference viewed: 16 (1 ULiège)
Full Text
Peer Reviewed
See detailPrecision design of vinyl amine and vinyl alcohol-based copolymers via cobalt-mediated radical polymerization
Stiernet, Pierre ULiege; Jérôme, Christine ULiege; Debuigne, Antoine ULiege

in Polymer Chemistry (in press)

Poly(vinyl alcohol) (PVA) and poly(vinyl amine) (PVAm) are major industrial polymers involved in countless applications taking advantage of their ability to establish hydrogen bonds and, for the latter ... [more ▼]

Poly(vinyl alcohol) (PVA) and poly(vinyl amine) (PVAm) are major industrial polymers involved in countless applications taking advantage of their ability to establish hydrogen bonds and, for the latter, to create charges along the polymer’s backbone upon protonation. Although combining vinyl alcohol and vinyl amine units in specific proportions within copolymers should allow precise tuning of their properties and enlarge the scope of their use, the controlled synthesis of poly(VAm-co-VA)s has been completely dis- regarded so far. In this context, we report a straightforward strategy for preparing the aforementioned copolymers via cobalt-mediated radical copolymerization of vinyl acetate (VAc) and vinyl acetamide (NVA) followed by hydrolysis. Copolymerization conditions were optimized to produce poly(NVA-co-VAc) with predictable molar mass, low dispersity and precise composition. Reactivity ratios were also determined to gain insight into the distribution of the amine and alcohol moieties along the backbone. Depending on the hydrolysis treatment applied to poly(NVA-co-VAc), unprecedented well-defined poly(VAm-co-VA)s and poly(NVA-co-VA)s were achieved via full deprotection of the precursor and selective hydrolysis of its esters, respectively. [less ▲]

Detailed reference viewed: 27 (7 ULiège)
Full Text
Peer Reviewed
See detailHeterogenization of a cyclocarbonation catalyst: optimization and kinetic study
Léonard, Géraldine L.-M.; Belet, Artium ULiege; Grignard, Bruno ULiege et al

in Catalysis Today (in press)

Different types of heterogeneous catalysts designed for a cyclocarbonation reaction between an epoxidized source and CO2 under supercritical conditions have been synthesized. The process implied a ... [more ▼]

Different types of heterogeneous catalysts designed for a cyclocarbonation reaction between an epoxidized source and CO2 under supercritical conditions have been synthesized. The process implied a quaternization step where a (haloalkyl)trimethoxysilane reacted with tributylamine leading to a tributyl(trimethoxysilylalkyl)ammonium halide, with iodine and bromine as halogens. Then, a grafting step onto commercial fumed silica through condensation reaction between the silane part and Si-OH surficial groups provided the immobilized catalyst. The efficiency of grafting has been validated by liquid 1H NMR, solid 29Si NMR and TG-DSC-MS analyzes. The benchmark cyclocarbonation reaction of polyethylene glycol diglycidylether at 80 °C and 100 bar during 4 h showed that the best immobilized catalyst was tributylpropylammonium iodide (IC3Q-EH5). It has also been shown that immobilization provided -surprisingly !- better conversions than the corresponding homogeneous catalyst’s: this phenomenon has been explained through an epoxide-ring-opening activating effect thanks to Si-OH surficial groups. Furthermore, kinetic studies performed by in situ Raman spectroscopy on IC3Q-EH5 showed that temperature had a strong influence on the yield of the reaction while CO2 pressure had only a small effect. Recycling of the catalyst has also been considered, but no precise conclusions could be conducted because of the high catalyst dispersion. Finally, the addition of a fluorinated alcohol co-catalyst allowed obtaining a similar yield but at 80 °C and 55 bar during only 2,5 h with the best candidate. [less ▲]

Detailed reference viewed: 44 (17 ULiège)
Full Text
Peer Reviewed
See detailCO2-sourced polycarbonates as solid electrolytes for room temperature operation lithium battery
Ouhib, Farid; Meabe, Leire; Mahmoud, Abdelfattah ULiege et al

in Journal of Materials Chemistry A (2019), 7(16), 9844-9853

In the last years, polycarbonates have been identified as alternatives to poly(ethylene oxide) as polymer electrolytes for lithium battery applications. In this work, we show the design of CO2-sourced ... [more ▼]

In the last years, polycarbonates have been identified as alternatives to poly(ethylene oxide) as polymer electrolytes for lithium battery applications. In this work, we show the design of CO2-sourced polycarbonates for its use in a room temperature lithium battery. Novel functional polycarbonates alternating oxo-carbonate moieties and polyethylene oxide segments are synthesized by the facile room temperature (rt) organocatalyzed polyaddition of CO2-sourced bis(?-alkylidene carbonate)s (bis-?CCs) with polyethylene oxide diols. The effect of the polyethylene oxide molar mass on the ionic conductivity and on the thermal properties of the poly(oxo-carbonate)s is investigated. The best candidate shows a low glass temperature of -44°C and a high ionic conductivity of 3.75 * 10-5 S cm-1 at rt when loaded with 30 wt% bis(trifluoromethanesulfonyl)imide salt (LiTFSI) without any solvent. All solid semi-interpenetrated network polymer electrolyte (SIN-SPE) is then fabricated by UV-cross-linking of a mixture containing a specifically designed poly(oxo-carbonate) bearing methacrylate pendants, diethylene glycol diacrylate and the previously described poly(oxo-carbonate) containing LiTFSI. The resulting self-standing membrane exhibits a high oxidation stability up to 5 V (vs Li/Li+), an ionic conductivity of 1.1 * 10-5 S cm-1 at rt (10-4 S cm-1 at 60°C) and promising mechanical properties. Assembled in a half cell configuration with LiFePO4 (LFP) as cathode and lithium as anode, the all-solid cell delivers a discharge capacity of 161 mAh g-1 at 0.1C and 60°C, which is very close to the theoretical capacity of LFP (170 mAh g-1). Also, a stable reversible cycling capacity over 400 cycles with high coulombic efficiency of 99 % is noted at 1C. Similar results are obtained at rt provided that 10 wt% of tetraglyme as plastisizer were added to SIN-SPE. I. [less ▲]

Detailed reference viewed: 44 (17 ULiège)
Full Text
Peer Reviewed
See detailGas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions
Haler, Jean ULiege; Massonnet, Philippe ULiege; Far, Johann ULiege et al

in Journal of the American Society for Mass Spectrometry (2019), 30(4), 563572

Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) tech- niques, ion mobility–mass spectrometry (IM-MS) has been recently added to ... [more ▼]

Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) tech- niques, ion mobility–mass spectrometry (IM-MS) has been recently added to the inventory of char- acterization technique. However, only few studies have focused on the reproducibility and robust- ness of polymer IM-MS analyses. Here, we per- form collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K0). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmen- tation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K0 deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl- 2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion–drift gas interaction potentials. [less ▲]

Detailed reference viewed: 79 (22 ULiège)
Full Text
Peer Reviewed
See detailPhoto-cross-linkable coumarin-based poly(ϵ-caprolactone) for light-controlled design and reconfiguration of shape-memory polymer networks
Defize, Thomas; Thomassin, Jean-Michel ULiege; Ottevaere, Heidi et al

in Macromolecules (2019), 52(2), 444-456

Photochemically cross-linked shape-memory polymer (SMP) materials have been achieved by functionalizing chain-ends of star-shaped poly(ϵ-caprolactone) (PCL) with 7-hydroxypropoxy-4-methylcoumarin followed ... [more ▼]

Photochemically cross-linked shape-memory polymer (SMP) materials have been achieved by functionalizing chain-ends of star-shaped poly(ϵ-caprolactone) (PCL) with 7-hydroxypropoxy-4-methylcoumarin followed by photodimerization of these end-groups. The kinetics of the network formation in function of the photosensitizer concentration has been studied by swelling experiments and rheology. Thanks to the design of a dedicated homemade mold, highly reproducible irradiation conditions have been achieved allowing to study the network formation and properties, especially the shape-memory properties, in relation to the coumarin dimerization degree as determined by Raman spectroscopy. In optimized conditions, PCL-based SMP materials exhibiting high fixity and recovery have been achieved in remarkably short irradiation time, typically 5 min. In addition, the precise control of the network cross-link density with the irradiation time, so as the high stability of the formed networks toward temperature variations was also demonstrated allowing the fine-tuning of the network properties by the irradiation process. Finally, the reversible character of the coumarin dimerization under light irradiation of appropriate wavelength has been quantified by Raman spectroscopy. The dimer photocleavage allows the photoreconfiguration of the networks offering the ability to modify the "permanent" shape of the SMP material, while preserving the excellent shape-memory properties. © 2018 American Chemical Society. [less ▲]

Detailed reference viewed: 20 (7 ULiège)
Full Text
Peer Reviewed
See detailCO2-sourced non-isocyanate poly(urethane)s with pH-sensitive imine linkages
Gennen, Sandro; Grignard, Bruno ULiege; Jérôme, Christine ULiege et al

in Advanced Synthesis and Catalysis (2019), 361(2), 355-365

Carbon dioxide is a renewable C1‐feedstock that is exploited for the production of polymers. In this work, we report on the conversion of CO2 into novel bis(oxo‐carbamate)s that are then exploited for the ... [more ▼]

Carbon dioxide is a renewable C1‐feedstock that is exploited for the production of polymers. In this work, we report on the conversion of CO2 into novel bis(oxo‐carbamate)s that are then exploited for the synthesis of degradable non‐isocyanate polyurethanes (NIPUs) bearing acid‐sensitive imine functions within the polymer backbone. Two CO2‐sourced bis(oxo‐carbamate)s were first prepared by the facile catalyst‐free and regioselective aminolysis of an α‐alkylidene cyclic carbonate (prepared by carboxylative coupling of CO2 with a propargylic alcohol) with two secondary diamines, piperazine and N,N’‐dimethyl‐1,6‐hexanediamine. A large diversity of poly(urethane‐co‐ imine)s (PUIs) with molar masses ranging from 4500 to 8500 g/mol were then prepared by polycondensation of bis(oxo‐carbamate)s with various primary diamines, and by using Ti(OEt)4 as catalyst and drying agent. Finally, the pH‐responsiveness of PUIs was demonstrated by immersing a representative polymer in aqueous solutions at different pH. This work illustrates that hydrolytically degradable NIPUs can be constructed by polycondensation of novel CO2‐sourced monomers with diamines. [less ▲]

Detailed reference viewed: 62 (13 ULiège)
Full Text
Peer Reviewed
See detailPoly(ionic liquid)-derived N-doped carbons with hierarchical porosity for lithium- and sodium-ion batteries
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

in Macromolecular Rapid Communications (2019), 40(1), 1800545

The performance of lithium‐ and sodium‐ion batteries relies notably on the accessibility to carbon electrodes of controllable porous structure and chemical composition. This work reports a facile ... [more ▼]

The performance of lithium‐ and sodium‐ion batteries relies notably on the accessibility to carbon electrodes of controllable porous structure and chemical composition. This work reports a facile synthesis of well‐defined N‐doped porous carbons (NPCs) using a poly(ionic liquid) (PIL) as precursor, and graphene oxide (GO)‐stabilized poly(methyl methacrylate) (PMMA) nanoparticles as sacrificial template. The GO‐stabilized PMMA nanoparticles are first prepared and then decorated by a thin PIL coating before carbonization. The resulting NPCs reach a satisfactory specific surface area of up to 561 m2 g−1 and a hierarchically meso‐ and macroporous structure while keeping a nitrogen content of 2.6 wt%. Such NPCs deliver a high reversible charge/discharge capacity of 1013 mA h g−1 over 200 cycles at 0.4 A g−1 for lithium‐ion batteries, and show a good capacity of 204 mA h g−1 over 100 cycles at 0.1 A g−1 for sodium‐ion batteries. [less ▲]

Detailed reference viewed: 56 (14 ULiège)
Full Text
Peer Reviewed
See detailPaclitaxel-loaded multifunctional nanoparticles for the targeted treatment of glioblastoma
Ganipineni, Lakshmi Pallavi; Ucakar, Bernard; Joudiou, Nicolas et al

in Journal of Drug Targeting (2019)

We hypothesized that the active targeting of αvβ3 integrin overexpressed in neoangiogenic blood vessels and glioblastoma (GBM) cells combined with magnetic targeting of paclitaxel- and SPIO-loaded PLGA ... [more ▼]

We hypothesized that the active targeting of αvβ3 integrin overexpressed in neoangiogenic blood vessels and glioblastoma (GBM) cells combined with magnetic targeting of paclitaxel- and SPIO-loaded PLGA-based nanoparticles could improve accumulation of nanoparticles in the tumor and therefore improve the treatment of GBM. Methods: PTX/SPIO PLGA nanoparticles with or without RGD-grafting were characterized. Their in vitro cellular uptake and cytotoxicity was evaluated by fluorospectroscopy and MTT assay. In vivo safety and anti-tumor efficacy of different targeting strategies was evaluated in orthotopic U87MG tumor model over multiple intravenous injections. Results: The nanoparticles of 250nm were negatively charged. RGD targeted nanoparticles showed a specific and higher cellular uptake than untargeted nanoparticles by activated U87MG and HUVEC cells. In vitro IC50 of PTX after 48h was approximately 1 ng/mL for all the PTX-loaded nanoparticles. The median survival time of the mice treated with magnetic targeted nanoparticles was higher than the control (saline) mice or mice treated with other evaluated strategies. The 6 doses of PTX did not induce any detectable toxic effects on liver, kidney and heart when compared to Taxol. Conclusion. The magnetic targeting strategy resulted in better therapeutic effect than the other targeting strategies (passive, active). [less ▲]

Detailed reference viewed: 36 (12 ULiège)
Full Text
Peer Reviewed
See detailPolymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono‑, di‑, and trivalent) batteries
Patil, Nagaraj; Mavrandonakis, Andreas; Jérôme, Christine ULiege et al

in ACS Applied Energy Materials (2019)

Organic electrode materials capable of reversible coordination/uncoordination of both mono- and multivalent ions in aqueous electrolytes are desired to develop safe, sustainable, and cost-effective water ... [more ▼]

Organic electrode materials capable of reversible coordination/uncoordination of both mono- and multivalent ions in aqueous electrolytes are desired to develop safe, sustainable, and cost-effective water-based batteries. Here, we demonstrate the universality of bioinspired redox-active polymers bearing catechol pendants to reversibly coordinate/uncoordinate numerous cations including H+ and Li+ to Zn2+ and Al3+ with fast kinetics and ultralong cyclability. This unprecedented versatility is based on a catecholato–metal cation complex (Cat2–(mMn+)) charge storage mechanism that dictates the overall electrochemistry: formation of stronger complexes in M+ < M2+ < M3+ order resulted in a huge redox potential increment that might be used to tune the operating voltage of the battery. [less ▲]

Detailed reference viewed: 20 (3 ULiège)
Full Text
Peer Reviewed
See detailRing-opening polymerization of lactones
Lecomte, Philippe ULiege; Jérôme, Christine ULiege

in Dove, Andrew; Sardon, Haritz; Naumann, Stefan (Eds.) Organic catalysis for polymerization (2019)

The synthesis of aliphatic polyesters by the ring-opening polymerization of cyclic monoesters was discovered by Carothers in the 1930s. Since then, a plethora of catalysts and initiators have been ... [more ▼]

The synthesis of aliphatic polyesters by the ring-opening polymerization of cyclic monoesters was discovered by Carothers in the 1930s. Since then, a plethora of catalysts and initiators have been discovered to promote this polymerization. Nowadays, steadily increasing attention is paid to organocatalysts and, among them, acids, bases, and H-bond donors and acceptors. Organocatalysts today available for the polymerization of medium size cyclic monoesters such as δ-valerolactone and ε-caprolactone will be reviewed. Special attention will be paid to dual catalysts capable of activating both the initiator and the monomer. The most efficient catalysts promote fast and selective ring-opening polymerization. The mechanism based either on ionic interactions, the establishment of H-bonds or nucleophilic activation will be discussed. The importance of ring size will be highlighted by the organocatalyzed polymerization of β-butyrolactone, γ-butyrolactone and pentadecalactone as a typical macrocyclic monoester. [less ▲]

Detailed reference viewed: 30 (4 ULiège)
Full Text
Peer Reviewed
See detailAntimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide
Parilti, Rahmet; Caprasse, Jérémie ULiege; Riva, Raphaël ULiege et al

in Journal of Colloid and Interface Science (2018), 532

Antimicrobial peptide loaded poly(2-hydroxyethyl methacrylate) particles were synthesized in supercritical carbon dioxide via one-pot free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate ... [more ▼]

Antimicrobial peptide loaded poly(2-hydroxyethyl methacrylate) particles were synthesized in supercritical carbon dioxide via one-pot free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate and a cross-linker. Discrete particles with a well-defined spherical morphology and a diameter as low as 450 nm have been obtained in mild conditions. The encapsulation and release of the peptide were confirmed by antimicrobial tests that demonstrated for the first time a sustained release of the peptide from poly(2-hydroxyethyl methacrylate) microgels prepared by one-pot dispersion polymerization in supercritical carbon dioxide and then dispersed in water. © 2018 [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
Peer Reviewed
See detailIn situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration
Chichiricco, Pauline Marie ULiege; Riva, Raphaël ULiege; Thomassin, Jean-Michel ULiege et al

in Dental Materials (2018), 34(12), 1769-1782

Periodontitis is an inflammatory disease that destroys the tooth-supporting attachment apparatus. Guided tissue regeneration (GTR) is a technique based on a bar- rier membrane designed to prevent wound ... [more ▼]

Periodontitis is an inflammatory disease that destroys the tooth-supporting attachment apparatus. Guided tissue regeneration (GTR) is a technique based on a bar- rier membrane designed to prevent wound space colonization by gingival cells. This study examined a new formulation composed of two polymers that could be photochemically cross-linked in situ into an interpenetrated polymer network (IPN) forming a hydrogel mem- brane. Methods. We synthetized and characterized silanized hydroxypropyl methylcellulose (Si- HPMC) for its cell barrier properties and methacrylated carboxymethyl chitosan (MA-CMCS) for its degradable backbone to use in IPN. Hydrogel membranes were cross-linked using riboflavin photoinitiator and a dentistry visible light lamp. The biomaterial’s physicochem- ical and mechanical properties were determined. Hydrogel membrane degradation was evaluated in lysozyme. Cytocompatibility was estimated by neutral red uptake. The cell bar- rier property was studied culturing human primary gingival fibroblasts or human gingival explants on membrane and analyzed with confocal microscopy and histological staining. Results. The IPN hydrogel membrane was obtained after 120 s of irradiation. The IPN showed a synergistic increase in Young moduli compared with the single networks. The CMCS addition in IPN allows a progressive weight loss compared to each polymer network. Cyto- compatibility was confirmed by neutral red assay. Human cell invasion was prevented by hydrogel membranes and histological sections revealed that the biomaterial exhibited a barrier effect in contact with soft gingival tissue. [less ▲]

Detailed reference viewed: 39 (7 ULiège)
Full Text
Peer Reviewed
See detailCatechol containing polyhydroxyurethanes as high-performance coatings and adhesives
Panchireddy, Satyannarayana ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

in ACS Sustainable Chemistry and Engineering (2018), 6(11), 14936-14944

Green routes for the synthesis of high-performance isocyanate-free polyurethane coatings and adhesives are intensively searched for. In this article, we report a solvent- and isocyanate-free formulation ... [more ▼]

Green routes for the synthesis of high-performance isocyanate-free polyurethane coatings and adhesives are intensively searched for. In this article, we report a solvent- and isocyanate-free formulation for novel poly(hydroxyurethane) glues bearing strongly adherent catechol groups. These adhesives are prepared by the polyaddition of a CO2-sourced tricyclic carbonate, hexamethylene diamine, and a catecholamine (dopamine). The role of the catechol functions on the PHU curing and on the final PHU properties are investigated. Although the dopamine slows down the curing of the formulation, this catecholamine added at only 3.9 mol % impressively improves the mechanical and adhesion performances of PHU. The lap shear adhesion of our product surpasses those of PHU that do not contain the catechols. We also demonstrate that the catechol-bearing PHU glues are competing with the adhesion performances of commercial PU glues, at least when a thermal curing is implemented to overcome the low reactivity of cyclic carbonate with amines. The use of renewable feedstocks, the solvent-free process, the atom economy polyaddition reaction, and the absence of any toxic reagent benefit the sustainability of the final product. [less ▲]

Detailed reference viewed: 35 (4 ULiège)
Full Text
Peer Reviewed
See detailSulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide
Parilti, Rahmet; Riva, Raphaël ULiege; Howdle, Steven M. et al

in International Journal of Pharmaceutics (2018), 549(1-2), 161-168

Sulindac loaded poly(HEMA) cross-linked microparticles were synthesized via one-pot free-radical dispersion polymerisation in supercritical carbon dioxide (scCO2) in presence of photocleavable diblock ... [more ▼]

Sulindac loaded poly(HEMA) cross-linked microparticles were synthesized via one-pot free-radical dispersion polymerisation in supercritical carbon dioxide (scCO2) in presence of photocleavable diblock stabilisers based on polyethylene oxide (PEO) and poly(heptadecafluorodecyl acrylate) (PFDA) bearing a o-nitrobenzyl photosensitive junction (hv) (PEO-hv-PFDA), and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Poly(HEMA) cross-linked microparticles either empty or sulindac loaded were obtained with well-defined spherical morphology with the sizes between 250 and 350 nm. Additionally, upon UV-photolysis the stabiliser on the surface was cleaved which permits to microparticles to be redispersed in water leading to water swollen microgels about 2.1–3.6 µm. Moreover, the release behaviour from obtained microgels indicated the sustained release of sulindac over 10 days. Besides, the surface modification after UV-photolysis was studied and proved that the particles can be functionalised with further chemistries. © 2018 Elsevier B.V. [less ▲]

Detailed reference viewed: 24 (3 ULiège)
See detailDesign of monodisperse polystyrene/polyacrylonitrile core-shell particles used as templating agents and source of carbon
Thangaraj, Vidhyadevi ULiege; Schrijnemakers, Audrey ULiege; Dewalque, Jennifer ULiege et al

Poster (2018, October 03)

In the present work, we synthesized Polystyrene (PS) and Polystyrene/polyacrylonitrile (PS/PAN) core shell particles by surfactant-free emulsion polymerization and characterized them by DLS and TEM. After ... [more ▼]

In the present work, we synthesized Polystyrene (PS) and Polystyrene/polyacrylonitrile (PS/PAN) core shell particles by surfactant-free emulsion polymerization and characterized them by DLS and TEM. After deposition of the PS/PAN particles on a surface, a TiCl4 solution was infiltrated in the interstices before thermal treatment. The carbonization of the PS core and the PAN shell led to voids and carbon in the inorganic layer, respectively. This paved the way to well-organized carbon coated porous TiO2 layers of interest in the field of electronics. [less ▲]

Detailed reference viewed: 49 (12 ULiège)
See detailDesign of reprocessable poly(ε-caprolactone)-based shape-memory materials by reversible tad chemistry
Riva, Raphaël ULiege; Defize, Thomas; Alexandre, Michaël et al

Poster (2018, October 03)

Detailed reference viewed: 33 (5 ULiège)
See detailTargeting the SDF-1α/CXR4 signalling axis for the trapping of glioblastoma cells
Haji Mansor, Muhammad; Najberg, Mathie; Thomassin, Jean-Michel ULiege et al

Conference (2018, September 28)

Detailed reference viewed: 22 (2 ULiège)