References of "Huynh, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailXXL Survey XXI. The environment and clustering of X-ray AGN in the XXL-South field
Melnyk, O.; Elyiv, A.; Smolcic, V. et al

in Astronomy and Astrophysics (2018), 620(A6),

This work is part of a series of studies focusing on the environment and the properties of the X-ray selected active galactic nuclei (AGN) population from the XXL survey. The present survey, given its ... [more ▼]

This work is part of a series of studies focusing on the environment and the properties of the X-ray selected active galactic nuclei (AGN) population from the XXL survey. The present survey, given its large area, continuity, extensive multiwavelength coverage, and large-scale structure information, is ideal for this kind of study. Here, we focus on the XXL-South (XXL-S) field. Our main aim is to study the environment of the various types of X-ray selected AGN and investigate its possible role in AGN triggering and evolution. We studied the large-scale (>1 Mpc) environment up to redshift z=1 using the nearest neighbour distance method to compare various pairs of AGN types. We also investigated the small-scale environment (<0.4 Mpc) by calculating the local overdensities of optical galaxies. In addition, we built a catalogue of AGN concentrations with two or more members using the hierarchical clustering method and we correlated them with the X-ray galaxy clusters detected in the XXL survey. It is found that radio detected X-ray sources are more obscured than non-radio ones, though not all radio sources are obscured AGN. We did not find any significant differences in the large-scale clustering between luminous and faint X-ray AGN, or between obscured and unobscured ones, or between radio and non-radio sources. At local scales (<0.4 Mpc), AGN typically reside in overdense regions, compared to non-AGN; however, no differences were found between the various types of AGN. A majority of AGN concentrations with two or more members are found in the neighbourhood of X-ray galaxy clusters within <25-45 Mpc. Our results suggest that X-ray AGN are typically located in supercluster filaments, but they are also found in over- and underdense regions. [less ▲]

Detailed reference viewed: 35 (4 ULiège)
Full Text
Peer Reviewed
See detailThe XXL survey: First results and future
Pierre, M.; Adami, C.; Birkinshaw, M. et al

in Astronomische Nachrichten (2017), 338

The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016 ... [more ▼]

The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z<2) cluster, (z<4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-$\lambda$ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z>1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions. [less ▲]

Detailed reference viewed: 29 (2 ULiège)
Full Text
Peer Reviewed
See detailThe XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme
Pierre, M.; Pacaud, F.; Adami, C. et al

in Astronomy and Astrophysics (2016), 592

Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum ... [more ▼]

Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of ∼5 × 10-15 erg s-1 cm-2 in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods. We describe the 542 XMM observations along with the associated multi-λ and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-λ associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi-λ data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps. © ESO, 2016. [less ▲]

Detailed reference viewed: 28 (2 ULiège)