References of "Hue, Vincent"
     in
Bookmark and Share    
Full Text
See detailThe polar region of Jupiter’s aurora : barcode noise, conjugate flares and more...
Bonfond, Bertrand ULiege; Grodent, Denis ULiege; Gladstone, Randy et al

Conference (2018, July 11)

Juno’s unprecedented polar orbits around Jupiter allow for unique observations of the polar aurorae and related phenomena. Here we make use of Juno-UVS, the UV imaging spectrograph operating in the 60-200 ... [more ▼]

Juno’s unprecedented polar orbits around Jupiter allow for unique observations of the polar aurorae and related phenomena. Here we make use of Juno-UVS, the UV imaging spectrograph operating in the 60-200 nm range, to explore the polar physics in two very different ways. In the first part of this presentation, we will analyze the rapid variations of the background noise caused by >10MeV electrons penetrating the instrument. In UV images, this rapidly varying signal takes the form of a barcode-like pattern. We will discuss the mapping, the altitude and the characteristic timescale of the “barcode events” in order to constrain the mechanisms giving rise to them. In the second part, we will compare simultaneous observations of the aurorae from the two hemispheres. One dataset comes from Juno-UVS while the other comes from the Hubble Space Telescope STIS instrument. We will show that most auroral features in one hemisphere have a clear counterpart in the other one. Among other examples, we will show evidence of conjugate flares in the active region of the two hemispheres. However, other strong brightness enhancements only show up in one hemisphere, without any echo in the other one. [less ▲]

Detailed reference viewed: 46 (6 ULiège)
See detailJUNO/MWR's supportive observations of downward field-aligned MeV electrons at Jupiter
Santos-Costa, Daniel; Kurth, William; Hospodarsky, George et al

in 42nd COSPAR Scientific Assembly (2018, July 01)

Since August 2016, the Juno MicroWave Radiometer (MWR) has continuously measured the radiation emitted by Jupiter and the surrounding environment, over a frequency range from 0.6 to 22 GHz, from Juno's ... [more ▼]

Since August 2016, the Juno MicroWave Radiometer (MWR) has continuously measured the radiation emitted by Jupiter and the surrounding environment, over a frequency range from 0.6 to 22 GHz, from Juno's highly elliptical 53-day polar orbit about Jupiter. The contributors to the strongest radio signals at the shorter frequencies are the thermal, cosmic microwave background, and synchrotron emission produced by the inner electron belt. Weaker but perceptible signatures in MWR are also reported at the shortest frequency during perijove 1 (PJ1) and PJ3-PJ11. Some of them are identified as a source of synchrotron emission produced by downward field-aligned MeV electrons in the middle magnetosphere. In this paper, we present a synthesis of the spatial distributions of the microwave radiation observed at six wavelengths. We focus on synchrotron emissions originating from regions beyond Io's plasma torus that we believe to be linked to auroral activity. To support our findings, we discuss the results of a multi-instrument analysis of radio (MWR, WAVES), field (Juno magnetometer), extreme and far-ultraviolet auroral emission (Juno/UVS), plasma and energetic electron (JADE, JEDI) datasets, and background radiation signatures in Juno's ASC instrument for PJ1. Our data analysis raises the question how electrons with energies of 10's of MeV are populating, transported, and accelerated within the middle magnetosphere to become part of the auroral current circuit at Jupiter. [less ▲]

Detailed reference viewed: 19 (1 ULiège)
See detailCombined Juno observations and modeling of th e Jovian auroral electron interaction with the Jovian upper atmosphere
Gérard, Jean-Claude ULiege; Bonfond, Bertrand ULiege; Gladstone, George R. et al

Poster (2018, July)

The Juno mission provides a unique opportunity during each perijove pass to sample the downward electron flux at spacecraft altitude while observing far ultraviolet H2 and infrared H3+ emissions at Juno’s ... [more ▼]

The Juno mission provides a unique opportunity during each perijove pass to sample the downward electron flux at spacecraft altitude while observing far ultraviolet H2 and infrared H3+ emissions at Juno’s magnetic footprint. In addition, the ratio of the H2 spectral band absorbed by hydrocarbons to the unabsorbed portion of the spectrum (FUV color ratio) is often used as a proxy for the depth of the penetration of energetic electrons (relative to the hydrocarbon homopause). The relationship between the color ratio and the electron penetration has been simulated with a Monte Carlo model solving the Boltzmann transport equation. Analysis of concurrent FUV and IR images obtained during the first perijove (PJ1) suggests that the ratio of H3+ radiance to H2 unabsorbed emission is maximal in regions with low FUV color ratio. This result suggests that part of the H3+ column is lost in reactions with methane which converts H3+ into heavier ions. We also examine the observed relationship between the detailed morphology of the ultraviolet structures and of the associated UV color ratio, the total downward electron energy flux and its spectral characteristics. [less ▲]

Detailed reference viewed: 18 (2 ULiège)
See detailElectron Pitch Angle Distributions Along Field Lines Connected to the Auroral Region from ~25 to ~1.2 RJ Measured by the Jovian Auroral Distributions Experiment-Electrons (JADE-E) on Juno
Allegrini, Frederic; Bagenal, Fran; Bolton, Scott J et al

Poster (2017, December 13)

The Jovian Auroral Distributions Experiment (JADE) on Juno provides critical in situ measurements of electrons and ions needed to understand the plasma distributions and processes that fill the Jovian ... [more ▼]

The Jovian Auroral Distributions Experiment (JADE) on Juno provides critical in situ measurements of electrons and ions needed to understand the plasma distributions and processes that fill the Jovian magnetosphere and ultimately produce Jupiter’s bright and dynamic aurora. JADE is an instrument suite that includes two essentially identical electron sensors (JADE-Es) and a single ion sensor (JADE-I). JADE-E measures electron energy distributions from ~0.1 to 100 keV and provides detailed electron pitch angle distributions (PAD) at ~7.5° resolution. Juno’s trajectories in the northern hemisphere have allowed JADE to sample electron energy and pitch angle distributions on field lines connected to the auroral regions from as close as ~1.2 RJ all the way to distances greater than 25 RJ. Here, we report on the evolution of these distributions. Specifically, the PADs change from mostly uniform at distances greater than ~20 RJ, to butterfly from ~18 to ~12 RJ, to field aligned or pancake, depending on the energy, closer to Jupiter. Below ~1.5 RJ, electron beams and loss cones are observed. [less ▲]

Detailed reference viewed: 27 (2 ULiège)
See detailJuno-UVS observation of the Io footprint: Influence of Io’s local environment and passage into eclipse on the strength of the interaction
Hue, Vincent; Gladstone, Randy; Greathouse, Thomas K et al

Poster (2017, December 13)

The Juno mission offers an unprecedented opportunity to study Jupiter, from its internal structure to its magnetospheric environment. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, built to ... [more ▼]

The Juno mission offers an unprecedented opportunity to study Jupiter, from its internal structure to its magnetospheric environment. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, built to characterize Jupiter’s UV emissions and provide remote sensing capacities for the onboard fields and particle instruments (MAG, Waves, JADE and JEDI). Juno’s orbit allows observing Jupiter from a unique vantage point above the poles. In particular, UVS has observed the instantaneous Io footprint and extended tail as Io enters into eclipse. This observation may better constrain whether the atmosphere of Io is sustained via volcanic activity or sublimation. Among other processes, the modulation of Io’s footprint brightness correlates to the strength of the interaction between the Io plasma torus and its ionosphere, which, in turn, is likely to be affected by the atmospheric collapse. UVS observed the Io footprint during two eclipses that occurred on PJ1 and PJ3, and one additional eclipse observation is planned during PJ9 (24 Oct. 2017). We present how the electrodynamic coupling between Io and Jupiter is influenced by changes in Io’s local environment, e.g. Io’s passage in and out of eclipse and Io’s traverse of the magnetodisc plasma sheet. [less ▲]

Detailed reference viewed: 26 (3 ULiège)
See detailSystematic capture of MeV electron beams by MWR
Santos-Costa, Daniel; Bellotti, Amadeo; Janssen, Mike et al

Poster (2017, December 13)

Every ~ 53 days since August 2016, Juno swings by Jupiter and as the spacecraft spins along a polar orbit, measurements of Jupiter's microwave radiation are carried out at high data rates for several ... [more ▼]

Every ~ 53 days since August 2016, Juno swings by Jupiter and as the spacecraft spins along a polar orbit, measurements of Jupiter's microwave radiation are carried out at high data rates for several hours (~ 9 hours) with the Juno Microwave Radiometer (MWR). Within ~ 6 planetary radii (Rj) and from inside/outside the magnetospheric region, the thermal and synchrotron emissions are measured at high temporal and spatial resolutions. In this paper, we present a synthesis of the spatial distributions of the microwave radiation and discuss the similarities and differences observed at six wavelengths (1.3-50 cm). In addition to the thermal emission and synchrotron radiation from Jupiter's electron belt, unexpected signatures in MWR are either systematically or sporadically reported during perijove 1 (PJ1) and PJ3-PJ6. The preliminary results of a multi-instrument analysis of radio (MWR), extreme and far-ultraviolet auroral emissions (Juno UVS), field (Juno magnetometer), keV electrons (JEDI), and background radiation signatures in Juno's ASC and SRU instruments suggest that some of these signatures are consistent with the capture by MWR of synchrotron emission radiated by MeV electron beams, which may be associated with auroral activity. We subsequently describe in detail our data analysis and effort to model the synchrotron radiation from MeV electron beams to support our findings. [less ▲]

Detailed reference viewed: 31 (1 ULiège)
See detailAn overview of the first year of observations of Jupiter’s auroras by Juno-UVS with multi-wavelength comparisons
Gladstone, Randy; Greathouse, Thomas K; Versteeg, Maarten H et al

Conference (2017, December 12)

Juno’s Ultraviolet Spectrograph (Juno-UVS) has observed the Jovian aurora during eight perijove passes. UVS typically observes Jupiter for 10 hours centered on closest approach in a series of swaths, with ... [more ▼]

Juno’s Ultraviolet Spectrograph (Juno-UVS) has observed the Jovian aurora during eight perijove passes. UVS typically observes Jupiter for 10 hours centered on closest approach in a series of swaths, with one swath per Juno spin (~30s). During this period the spacecraft range to Jupiter’s aurora decreases from ~6 RJ to ~0.3 RJ (or less) in the north, and then reverses this in the south, so that spatial resolution changes dramatically. A scan mirror is used to target different features or raster across the entire auroral region. Juno-UVS observes a particular location for roughly 17 ms/swath, so the series of swaths provide snapshots of ultraviolet auroral brightness and color. A variety of forms and activity levels are represented in the Juno-UVS data–some have been described before with HST observations, but others are new. One interesting result is that the color ratio, often used as a proxy for energetic particle precipitation, may instead (in certain regions) indicate excitation of H2 by low-energy ionospheric electrons. Additional results from comparisons with simultaneous observations at x-ray, visible, and near-IR wavelengths will also be presented. [less ▲]

Detailed reference viewed: 21 (4 ULiège)
See detailFirst simultaneous observations of local moon aurora and the moon footprints in Jupiter’s polar aurora
Roth, Lorenz; Grodent, Denis ULiege; Gladstone, Randy et al

Conference (2017, December 12)

The interaction of the co-rotating magnetospheric plasma with Jupiter’s Galilean moons generates local perturbations and auroral emissions in the moons’ tenuous atmospheres. Alfvén waves are launched by ... [more ▼]

The interaction of the co-rotating magnetospheric plasma with Jupiter’s Galilean moons generates local perturbations and auroral emissions in the moons’ tenuous atmospheres. Alfvén waves are launched by this local interaction and travel along Jupiter’s field lines triggering various effects that finally lead to the auroral moon footprints far away in Jupiter’s polar regions. Within the large Hubble Space Telescope aurora program in support of the NASA Juno mission (HST GO-14634, PI D. Grodent), HST observed the local aurora at the moons Io and Ganymede on three occasions in 2017 while the Juno Ultraviolet Spectrograph simultaneously observed Jupiter’s aurora and the moon footprints. In this presentation, we will provide first results from the first-ever simultaneous moon and footprint observations for the case of Io. We compare the temporal variability of the local moon aurora and the Io footprint, addressing the question how much of the footprint variability originates from changes at the moon source and how much originates from processes in the regions that lie in between the moon and Jupiter’s poles. [less ▲]

Detailed reference viewed: 36 (2 ULiège)
See detailA Study of Local Time Variations of Jupiter’s Ultraviolet Aurora using Juno-UVS
Greathouse, Thomas K; Gladstone, Randy; Versteeg, Maarten H et al

Conference (2017, December 12)

Juno’s Ultraviolet Spectrograph (Juno-UVS) offers unique views of Jupiter’s auroras never before obtained in the UV, observing at all local times (unlike HST observations, limited to the illuminated disk ... [more ▼]

Juno’s Ultraviolet Spectrograph (Juno-UVS) offers unique views of Jupiter’s auroras never before obtained in the UV, observing at all local times (unlike HST observations, limited to the illuminated disk). With Juno’s 2-rpm spin period, the UVS long slit rapidly scans across Jupiter observing narrow stripes or swaths of Jupiter’s poles, from 5 hours prior to perijove until 5 hours after perijove. By rotating a mirror interior to the instrument, UVS can view objects from 60 to 120 degrees off the spacecraft spin axis. This allows UVS to map out the entire auroral oval over multiple spins, even when Juno is very close to Jupiter. Using the first 8 perijove passes, we take a first look for local time effects in Jupiter’s northern and southern auroras. We focus on the strength of auroral oval emissions and polar emissions found poleward of the main oval. Some unique polar emissions of interest include newly discovered polar flare emissions that start off as small localized points of emission but quickly (10’s of sec) evolve into rings. These emissions evolve in such a way as to be reminiscent of raindrops striking a pond. [less ▲]

Detailed reference viewed: 30 (3 ULiège)
Full Text
See detailNorth and South: Simultaneous observations of both Jovian poles from Juno and the Hubble Space Telescope
Bonfond, Bertrand ULiege; Gladstone, George R.; Grodent, Denis ULiege et al

Poster (2017, June 15)

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance ... [more ▼]

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance. However, Juno’s instruments can only observe one hemisphere at a time. Fortunately, the Hubble Space Telescope points its 2.4 m mirror toward the opposite hemisphere during some of these time intervals, providing truly simultaneous observations of both poles. We compare observations from Juno-UVS with Far-UV imaging sequences from the Hubble’s Space Telescope Imaging Spectrograph (STIS). Juno-UVS acquires spectrally resolved images of 17 ms exposure every 30 s Juno spin in the 70-205 nm wavelength range, while STIS can acquire about 270 consecutive 10 s images per HST orbit in the 130-160 nm range, but without any spectral resolution. Despite some differences, these datasets are similar enough in terms of spectral coverage, temporal and spatial resolution to allow direct comparisons. On Jupiter, the magnetic field is highly asymmetric and displays significant localized anomalies. Furthermore, most processes leading to auroral emissions depend on the magnetic field magnitude, either in the equatorial plane, in the acceleration regions, or in the upper atmosphere. Investigating morphological and brightness discrepancies between the two hemispheres provides precious clues on the current systems flowing in the magnetosphere and on the charged particles acceleration mechanisms. [less ▲]

Detailed reference viewed: 23 (8 ULiège)
Full Text
See detailThe Jovian UV aurorae as seen by Juno-UVS
Bonfond, Bertrand ULiege; Gladstone, Randy; Grodent, Denis ULiege et al

Conference (2017, April 26)

The Juno spacecraft was inserted in orbit around Jupiter on July 4th 2016. Its highly elongated polar orbit brings it <5000 km above the cloud tops every 53,5 days, allowing spectacular and unprecedented ... [more ▼]

The Juno spacecraft was inserted in orbit around Jupiter on July 4th 2016. Its highly elongated polar orbit brings it <5000 km above the cloud tops every 53,5 days, allowing spectacular and unprecedented views of its polar aurorae. The Juno-UVS instrument is an imaging spectrograph observing perpendicularly to the Juno spin axis. It is equipped with a moving scan mirror at the entrance of the instrument that allows the field of view to be directed up to +/-30° away from the spin plane. The 70-205 nm bandpass comprises key UV auroral emissions such as the H2 bands and the H Lyman alpha line, as well as hydrocarbon absorption bands. We present polar maps of the aurorae at Jupiter for the first three first few periapses. These maps offer the first high resolution observations of the night-side aurorae. We will discuss the observed auroral morphology, including the satellite footprints, the outer emissions, the main emission and the polar emissions. We will also show maps of the color ratio, comparing the relative intensity of wavelengths subject to different degrees of absorption by CH4. Such measurements directly relate to the energy of the precipitating particles, since the more energetic the particles, the deeper they penetrate and the stronger the resulting methane absorption. For example, we will show evidence of longitudinal shifts between the brightness peaks and color ratio peaks in several auroral features. Such shifts may be interpreted as the result of the differential particle drift in plasma injection signatures. [less ▲]

Detailed reference viewed: 14 (2 ULiège)
Full Text
See detailThe complex behavior of the satellite footprints at Jupiter: the result of universal processes?
Bonfond, Bertrand ULiege; Grodent, Denis ULiege; Badman, Sarah V. et al

Poster (2016, December 14)

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other ... [more ▼]

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other hand. Out of the three, the Io footprint is the brightest and the most studied. Present in each hemisphere, it is made of at least three different spots and an extended trailing tail. The variability of the brightness of the spots as well as their relative location has been tentatively explained with a combination of Alfvén waves’ partial reflections on density gradients and bi-directional electron acceleration at high latitude. Should this scenario be correct, then the other footprints should also show the same behavior. Here we show that all footprints are, at least occasionally, made of several spots and they all display a tail. We also show that these spots share many characteristics with those of the Io footprint (i.e. some significant variability on timescales of 2-3 minutes). Additionally, we present some Monte-Carlo simulations indicating that the tails are also due to Alfvén waves electron acceleration rather than quasi-static electron acceleration. Even if some details still need clarification, these observations strengthen the scenario proposed for the Io footprint and thus indicate that these processes are universal. In addition, we will present some early results from Juno-UVS concerning the location and morphology of the footprints during the first low-altitude observations of the polar aurorae. These observations, carried out in previously unexplored longitude ranges, should either confirm or contradict our understanding of the footprints. [less ▲]

Detailed reference viewed: 37 (8 ULiège)
Full Text
See detailInitial observations of Jupiter’s aurora from Juno’s Ultraviolet Spectrograph (Juno-UVS)
Gladstone, Randy; Versteeg; Greathouse, Thomas et al

Conference (2016, December 13)

Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in ... [more ▼]

Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter’s auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a “dog-bone” shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno’s spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter’s auroral morphology and brightness to provide context for in situ measurements by Juno’s particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno’s first perijove pass with its instruments powered on and taking data. [less ▲]

Detailed reference viewed: 47 (5 ULiège)
Full Text
See detailSearch for low-latitude atmospheric hydrocarbon variations on Jupiter from Juno-UVS measurements
Hue, Vincent; Gladstone, Randy; Greathouse, Thomas et al

Conference (2016, December 13)

The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on ... [more ▼]

The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on July 4th 2016. The nominal Juno mission involves 35 science polar-orbits of 14-days period, with perijove and apojove distances located at 0.06 Rj and 45 Rj, respectively. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors (New Horizons- and Rosetta- Alice, LRO-LAMP) is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral and atmospheric features at +/- 30˚ perpendicular to the Juno spin plane. It will provide new constraints on Jupiter’s auroral morphology, spectral features, and vertical structure, while providing remote-sensing constraints for the onboard waves and particle instruments. It will also be used to probe upper-atmospheric composition through absorption features found in the UV spectra using reflected solar UV radiation. For example, stratospheric hydrocarbons such as C2H2 and C2H6 are known to absorb significantly in the 150-180 nm regions, and these absorption features can be used to determine their abundances. We will present our search for the spectroscopic features seen in Jupiter’s reflected sunlight during the first perijove. [less ▲]

Detailed reference viewed: 28 (4 ULiège)
See detailJuno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach
Gladstone, G. Randall; Versteeg, Maarten; Greathouse, Thomas K. et al

Conference (2016, October)

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 ... [more ▼]

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H<SUB>2</SUB> bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm<SUP>2</SUP> input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth. [less ▲]

Detailed reference viewed: 21 (1 ULiège)
See detailUV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission
Hue, Vincent; Gladstone, G. Randall; Versteeg, Maarten et al

Conference (2016, October)

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for ... [more ▼]

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter’s auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time. [less ▲]

Detailed reference viewed: 27 (3 ULiège)