References of "Gonzalez-Galindo, F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMartian dust storm impact on atmospheric H 2 O and D/H observed by ExoMars Trace Gas Orbiter
Vandaele, A. C.; Korablev, O.; Daerden, F. et al

in Nature (2019), 568

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to ... [more ▼]

Global dust storms on Mars are rare 1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere 3 , primarily owing to solar heating of the dust 3 . In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars 4 . Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes 5,6 , as well as a decrease in the water column at low latitudes 7,8 . Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H 2 O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H 2 O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals 3 . The observed changes in H 2 O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere. © 2019, The Author(s), under exclusive licence to Springer Nature Limited. [less ▲]

Detailed reference viewed: 19 (4 ULiège)
Full Text
Peer Reviewed
See detailNo detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
Korablev, O.; Vandaele, A. C.; Montmessin, F. et al

in Nature (2019), 568

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of ... [more ▼]

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations 2–5 . These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere 6,7 , which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane 1,6,8 . Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections 2,4 . We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater 4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally. [less ▲]

Detailed reference viewed: 16 (3 ULiège)
See detailMartian upper-atmosphere circulation and tides revealed through MAVEN/IUVS observations of nitric oxide nightglow
Schneider, N.M.; Stiepen, A.; Milby, Z. et al

Conference (2018, December 11)

The nitric oxide δ and γ bands are ultraviolet emissions which reflect the production rate of nitric oxide (NO) from the recombination of excited nitrogen and oxygen atoms. We use it as a tracer of the ... [more ▼]

The nitric oxide δ and γ bands are ultraviolet emissions which reflect the production rate of nitric oxide (NO) from the recombination of excited nitrogen and oxygen atoms. We use it as a tracer of the dynamics between Mars’ upper- and middle-atmospheres, particularly of day-to-night and summer-to-winter pole circulation. We analyse this rate as it varies over Mars’ surface in mission-long aggregations and local-time divisions. Our data were gathered by the Mars Atmosphere and Volatile Evolution (MAVEN) mission’s Imaging UltraViolet Spectrograph (IUVS) and span different seasonal conditions and latitudes. The data span allows a limited comparison between two subsequent Mars years. In our previous study from a limited dataset of atmospheric limb scans (Stiepen 2017, doi:10.1002/2016JA023523), we discovered a wave-3 structure to the nightglow at equatorial latitudes. For this study, we use scans taken of the full disk of Mars as seen at apoapse over 1.25 Mars years. We observe the same wave-3 structure, and find strong seasonal and local-time dependencies on position and brightness. We also discovered a wave-2 structure in northern polar regions that persists through all observed local times and seasons. We compare our observations to model calculations from the LMD-MGCM. We find the model generally under-predicts the brightness of the nightglow at all sub-polar latitudes, suggesting it over-estimates the efficiency of atomic transport to the poles. However, we also find that the model reproduces the observed equatorial wave-3 and polar wave-2 structures. We identify the dominant atmospheric tide component of the equatorial wave-3 structure and analysis of the local-time dependencies of the wave structures and the brightness across all latitudes. We also compare the observed polar nightglow wave structure to contemporaneous dayside ozone distributions also measured by IUVS. [less ▲]

Detailed reference viewed: 27 (1 ULiège)
Full Text
Peer Reviewed
See detailNOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
Vandaele, A. C.; Lopez-Moreno, J.-J.; Patel, M. R. et al

in Space Science Reviews (2018), 214

The NOMAD ("Nadir and Occultation for MArs Discovery") spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars' atmosphere, with a ... [more ▼]

The NOMAD ("Nadir and Occultation for MArs Discovery") spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars' atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity. [less ▲]

Detailed reference viewed: 29 (11 ULiège)
See detailUnveiling Mars nightside mesosphere dynamics by IUVS/MAVEN global images of NO nightglow
Stiepen, Arnaud ULiege; Jain, S. K.; Schneider, N. M. et al

Conference (2017, September 01)

We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the ... [more ▼]

We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft. The seasonal dynamics of the Martian thermosphere-mesosphere can be constrained based on the distribution of these emissions. We show evidence for local (emission streaks and splotches) and global (longitudinal and seasonal) variability in brightness of the emission and provide quantitative comparisons to GCM simulations. [less ▲]

Detailed reference viewed: 9 (0 ULiège)
Full Text
See detailGlobal Simulation of UV Atmospheric Emissions
González-Galindo, F.; López-Valverde, M. A.; Forget, F. et al

Conference (2017, January 17)

Detailed reference viewed: 31 (10 ULiège)
Full Text
See detailEmisiones de NO en la mesosfera marciana: medidas y simulaciones
González-Galindo, F; López-Valverde, M.A.; Gagné, Marie-Eve et al

Conference (2015)

Detailed reference viewed: 46 (0 ULiège)