References of "Fontanive, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B
Lazzoni, C.; Zurlo, A.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 641

Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered ... [more ▼]

Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems. <BR /> Aims: In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms. <BR /> Methods: To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions. <BR /> Results: After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1M[SUB]Jup[/SUB], and a mass ratio with respect to the brown dwarf of 1/10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs. <BR /> Conclusions: While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. <P />Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209, and 0104.C-0327(A) and on observations collected at LBT Observatory. [less ▲]

Detailed reference viewed: 24 (1 ULiège)
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailHint of curvature in the orbital motion of the exoplanet 51 Eridani b using 3 yr of VLT/SPHERE monitoring
Maire, Anne-Lise ULiege; Rodet, L.; Cantalloube, F. et al

in Astronomy and Astrophysics (2019), 624

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting ... [more ▼]

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting the primary star at 13 au, and a low-mass debris disk around the primary star with possible cold and warm components inferred from the spectral energy distribution. <BR /> Aims: We aim to better constrain the orbital parameters of the known giant planet. <BR /> Methods: We monitored the system over three years from 2015 to 2018 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT). <BR /> Results: We measure an orbital motion for the planet of 130 mas with a slightly decreasing separation ( 10 mas) and find a hint of curvature. This potential curvature is further supported at 3σ significance when including literature Gemini Planet Imager (GPI) astrometry corrected for calibration systematics. Fits of the SPHERE and GPI data using three complementary approaches provide broadly similar results. The data suggest an orbital period of 32[SUB]-9[/SUB][SUP]+17[/SUP] yr (i.e., 12[SUB]-2[/SUB][SUP]+4[/SUP] au in semi-major axis), an inclination of 133[SUB]-7[/SUB][SUP]+14[/SUP] deg, an eccentricity of 0.45[SUB]-0.15[/SUB][SUP]+0.10[/SUP], and an argument of periastron passage of 87[SUB]-30[/SUB][SUP]+34[/SUP] deg [mod 180°]. The time at periastron passage and the longitude of node exhibit bimodal distributions because we do not yet detect whether the planet is accelerating or decelerating along its orbit. Given the inclinations of the orbit and of the stellar rotation axis (134-144°), we infer alignment or misalignment within 18° for the star-planet spin- orbit. Further astrometric monitoring in the next 3-4 yr is required to confirm at a higher significance the curvature in the motion of the planet, determine if the planet is accelerating or decelerating on its orbit, and further constrain its orbital parameters and the star-planet spin-orbit. <P />The fitted orbits and the histogram distributions of the orbital parameters are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/624/A118">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/624/A118</A>Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298, 096.C-0241, 198.C-0209, and 1100.C-0481. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
Peer Reviewed
See detailSPHERE dynamical and spectroscopic characterization of HD 142527B
Claudi, R.; Maire, Anne-Lise ULiege; Mesa, D. et al

in Astronomy and Astrophysics (2019), 622

<BR /> Aims: HD 142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been ... [more ▼]

<BR /> Aims: HD 142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (> 5 au) orbital separation around young stars. <BR /> Methods: We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. <BR /> Results: We detect the accreting low-mass companion HD 142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M[SUB]J[/SUB] are visible in the field of view of IFS (̃100 au centered on the star) or in the IRDIS field of view (̃400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD 142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 ± 0.06 M[SUB]☉[/SUB] and R = 0.15 ± 0.07 R[SUB]☉[/SUB]. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26[SUP]+0.16[/SUP][SUB]-0.14[/SUB] M[SUB]☉[/SUB], which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 - 137 yr; an inclination of i = 121 - 130°, a value of Ω = 124 - 135° for the longitude of node, and an 68% confidence interval of ̃18 - 57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: ̃0.2-0.45 and ̃0.45-0.7 for e, and ̃2015-2020 and ̃2020-2022 for T[SUB]0[/SUB]. While these orbital parameters might at first suggest that HD 142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features. <P />Based on observations collected at the European Organisation for astronomical research in the southern emisphere under ESO programmes 095.C-0298, 096.C-0241, 097.C-0865 and 189.C-0209.The reduced images are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/622/A96">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/622/A96</A> [less ▲]

Detailed reference viewed: 28 (0 ULiège)
Full Text
Peer Reviewed
See detailPost-conjunction detection of β Pictoris b with VLT/SPHERE
Lagrange, A.-M.; Boccaletti, A.; Langlois, M. et al

in Astronomy and Astrophysics (2019), 621

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers ... [more ▼]

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to β Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. <BR /> Aims: We aimed at further constraining β Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. <BR /> Methods: We used SPHERE at the VLT to precisely monitor the orbital motion of beta β Pictoris b since first light of the instrument in 2014. <BR /> Results: We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected β Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30° in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 ± 0.5 au (1σ), it definitely excludes previously reported possible long orbital periods, and excludes β Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away. <P />Based on observations collected at the European Southern Observatory under programmes 198.C-0209, 1100.C-0481. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailHigh-contrast study of the candidate planets and protoplanetary disk around HD 100546
Sissa, E.; Gratton, R.; Garufi, Antonio et al

in Astronomy and Astrophysics (2018), 619

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD ... [more ▼]

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD 100546 environment with high-contrast imaging exploiting several different observing modes of SPHERE, including data sets with and without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithm images clearly show the disk up to 200 au. More aggressive algorithms reveal several rings and warped arms that are seen overlapping the main disk. Some of these structures are found to lie at considerable height over the disk mid-plane at about 30 au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at 40 au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure (H/r = 0.18 at 40 au) can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au spans between the 1:2 and 3:2 resonance orbits of a massive body located at 70 au, which mightcoincide with the candidate planet HD 100546b detected with previous thermal infrared (IR) observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD 100546c in our data, we find a diffuse emission close to the expected position of HD 100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane, a result that could be confirmed with new observations. Further observations at various wavelengths are required to fully understand the complex phenomenology of HD 100546. <P />Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.C-0298, 096.C-0241, 096.C-0248, 097.C-0523, 097.C-0865, and 098.C-0209). [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailInvestigating the young solar system analog HD 95086. A combined HARPS and SPHERE exploration
Chauvin, G.; Gratton, R.; Bonnefoy, M. et al

in Astronomy and Astrophysics (2018), 617

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to ... [more ▼]

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. <BR /> Methods: We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. <BR /> Results: We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2[SUP]+0.3[/SUP][SUB]-0.2[/SUB], with a semi-major axis 52 au corresponding to orbital periods of 288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations. <P />Based on observations collected at the European Southern Observatory, Chile (ESO SPHERE Guaranteed Time Observation Program 095.C-0273, 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209) and ESO HARPS Open Time Observation Program 099.C-0205, 192. C-0224. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailOrbiting a binary. SPHERE characterisation of the HD 284149 system
Bonavita, M.; D'Orazi, V.; Mesa, D. et al

in Astronomy and Astrophysics (2017), 608

<BR /> Aims: In this paper we present the results of the SPHERE observation of the <ASTROBJ>HD 284149</ASTROBJ> system, aimed at a more detailed characterisation of both the primary and its brown dwarf ... [more ▼]

<BR /> Aims: In this paper we present the results of the SPHERE observation of the <ASTROBJ>HD 284149</ASTROBJ> system, aimed at a more detailed characterisation of both the primary and its brown dwarf companion. <BR /> Methods: We observed <ASTROBJ>HD 284149</ASTROBJ> in the near-infrared with SPHERE, using the imaging mode (IRDIS+IFS) and the long-slit spectroscopy mode (IRDIS-LSS). The data were reduced using the dedicated SPHERE pipeline, and algorithms such as PCA and TLOCI were applied to reduce the speckle pattern. <BR /> Results: The IFS images revealed a previously unknown low-mass ( 0.16 M[SUB]☉[/SUB]) stellar companion (<ASTROBJ>HD 294149</ASTROBJ> B) at 0.1'', compatible with previously observed radial velocity differences, as well as proper motion differences between Gaia and Tycho-2 measurements. The known brown dwarf companion (<ASTROBJ>HD 284149</ASTROBJ> b) is clearly visible in the IRDIS images. This allowed us to refine both its photometry and astrometry. The analysis of the medium resolution IRDIS long slit spectra also allowed a refinement of temperature and spectral type estimates. A full reassessment of the age and distance of the system was also performed, leading to more precise values of both mass and semi-major axis. <BR /> Conclusions: As a result of this study, <ASTROBJ>HD 284149</ASTROBJ> ABb therefore becomes the latest addition to the (short) list of brown dwarfs on wide circumbinary orbits, providing new evidence to support recent claims that object in such configuration occur with a similar frequency to wide companions to single stars. <P />The reduced spectrum is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/608/A106">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/608/A106</A> [less ▲]

Detailed reference viewed: 26 (0 ULiège)