References of "Ergenzinger, K"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSpace-based infrared interferometry to study exoplanetary atmospheres
Defrere, Denis ULiege; Léger, A.; Absil, Olivier ULiege et al

in Experimental Astronomy: Astrophysical Instrumentation and Methods (in press), 1801

The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large ... [more ▼]

The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5-20um). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of Earth's atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument. [less ▲]

Detailed reference viewed: 32 (0 ULiège)
Full Text
See detailGENIE: a Ground-Based European Nulling Instrument at ESO Very Large Telescope Interferometer
Gondoin, P.; den Hartog, R.; Fridlund, M. et al

in Richichi, A.; Delplancke, F.; Paresce, F. (Eds.) et al The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation (2008)

Darwin is one of the most challenging space projects ever considered by the European Space Agency (ESA). Its principal objectives are to detect Earth-like planets around nearby stars, to analyze the ... [more ▼]

Darwin is one of the most challenging space projects ever considered by the European Space Agency (ESA). Its principal objectives are to detect Earth-like planets around nearby stars, to analyze the composition of their atmospheres and to assess their ability to sustain life as we know it. Darwin is conceived as a space ``nulling interferometer'' which makes use of on-axis destructive interferences to extinguish the stellar light while keeping the off-axis signal of the orbiting planet. Within the frame of the Darwin program, definition studies of a Ground based European Nulling Interferometry Experiment, called GENIE, were completed in 2005. This instrument built around the Very Large Telescope Interferometer (VLTI) in Paranal will test some of the key technologies required for the Darwin Infrared Space Interferometer. GENIE will operate in the L' band around 3.8 microns as a single Bracewell nulling interferometer using either two Auxiliary Telescopes (ATs) or two 8m Unit Telescopes (UTs). Its science objectives include the detection and characterization of dust disks and low-mass companions around nearby stars. [less ▲]

Detailed reference viewed: 18 (0 ULiège)