References of "Durgun, Yetkin Özüm"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time
Durgun, Yetkin Özüm ULiege; Gobin, Anne; Duveiller, Grégory et al

in International Journal of Applied Earth Observation and Geoinformation (2020), 86

Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal ... [more ▼]

Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal information to assist such yield forecasts. This study explores different configurations of remote sensing time series to estimate of winter wheat yield using either spatially finer but temporally sparser time series (5daily at 100 m spatial resolution) or spatially coarser but denser (300 m and 1 km at daily frequency) time series. Furthermore, we hypothesised that better yield estimations could be made using thermal time, which is closer to the crop physiological development. Time series of NDVI from the PROBA-V instrument, which has delivered images at a spatial resolution of 100 m, 300 m and 1 km since 2013, were extracted for 39fields for field and 56fields for regional level analysis across Northern France during the growing season 2014-2015. An asymmetric double sigmoid model was fitted on the NDVI series of the central pixel of the field. The fitted model was subsequently integrated either over thermal time or over calendar time, using different baseline NDVI thresholds to mark the start and end of the cropping season. These integrated values were used as a predictor for yield using a simple linear regression and yield observations at field level. The dependency of this relationship on the spatial pixel purity was analysed for the 100 m, 300 m and 1 km spatial resolution. At field level, depending on the spatial resolution and the NDVI threshold, the adjustedR²ranged from 0.20 to 0.74; jackknifed–leave-one-field-outcross validation–RMSE ranged from 0.6 to 1.07 t/ha and MAE ranged between 0.46 and 0.90 t/ha for thermal time analysis. The best results for yield estimation (adjustedR²= 0.74, RMSE =0.6 t/ha and MAE =0.46 t/ha)were obtained from the integration over thermal time of 100 m pixel resolution using a baseline NDVI threshold of 0.2 and without any selection based on pixel purity. The field scale yield estimation was aggregated to the regional scale using 56fields. At the regional level, there was a difference of 0.0012 t/ha between thermal and calendar time for average yield estimations. The standard error of mean results showed that the error was larger for a higher spatial resolution with no pixel purity and smaller when purity increased. These results suggest that, for winter wheat, a finer spatial resolution rather than a higher revisit frequency and an increasing pixel purity enable more accurate yield estimations when integrated over thermal time at the field scale and at the regional scale only if higher pixel purity levels are considered. This method can be extended to larger regions, other crops, and other regions in the world, although site and crop-specific adjustments will have to include other threshold temperatures to reflect the boundaries of phenological activity. In general, however, this methodological approach should be applicable to yield estimation at the parcel and regional scales across the world. [less ▲]

Detailed reference viewed: 41 (3 ULiège)
Full Text
See detailAdvancing agricultural monitoring for improved yield estimations using SPOT-VGT and PROBA-V type remote sensing data
Durgun, Yetkin Özüm ULiege

Doctoral thesis (2018)

Accurate and timely crop condition monitoring is crucial for food management and the economic development of any nation. However, accurately estimating crop yield from the field to global scales is a ... [more ▼]

Accurate and timely crop condition monitoring is crucial for food management and the economic development of any nation. However, accurately estimating crop yield from the field to global scales is a challenge. According to the global strategy of the World Bank, in order to improve national agricultural statistics, crop area, crop production, and crop yield are key variables that all countries should be able to provide. Crop yield assessment requires that both an estimation of the quantity of a product and the area provided for that product should be available. The definition seems simple; however, these measurements are time consuming and subject to error in many circumstances. Remote sensing is one of several methods used for crop yield estimation. The yield results from a combination of environmental factors, such as soil, weather, and farm management, which are responsible for the unique spectral signature of a crop captured by satellite images. Additionally, yield is an expression of the state, structure, and composition of the plant. Various indices, crop masks, and land observation sensors have been developed to remotely observe and control crops in different regions. This thesis focuses on how much low spatial resolution satellites, such as Project for On Board Autonomy Vegetation (PROBA V), can contribute to global crop monitoring by aiding the search for improved methods and datasets for better crop yield estimation. This thesis contains three chapters. The first chapter explores how an existing product, Dry Matter Productivity (DMP), that has been developed for Satellites Pour l’Observation de la Terre or Earth observing Satellites VeGeTation (SPOT VGT), and transferred to PROBA V, can be improved to more closely relate to yield anomalies across selected regions. This chapter also covers the testing of the contribution of stress factors to improve wheat and maize yield estimations. According to Monteith’s theory, crop biomass linearly correlates with the amount of Absorbed Photosynthetically Active Radiation (APAR) and constant Radiation Use Efficiency (RUE) downregulated by stress factors such as CO2, fertilization, temperature, and water stress. The objective of this chapter is to investigate the relative importance of these stress factors in relation to the regional biomass production and yield. The production efficiency model Copernicus Global Land Service Dry Matter Productivity (CGLS DMP), which follows Monteith’s theory, is modified and evaluated for common wheat and silage maize in France, Belgium, and Morocco using SPOT VGT for the 1999–2012 period. The correlations between the crop yield data and the cumulative modified DMP, CGLS DMP, Fraction of APAR (fAPAR), and Normalized Difference Vegetation Index (NDVI) values are analyzed for different crop growth stages. The best results are obtained when combinations of the most appropriate stress factors are included for each selected region, and the modified DMP during the reproductive stage is accumulated. Though no single solution can demonstrate an improvement of the global product, the findings support an extension of the methodology to other regions of the world. The second chapter demonstrates how PROBA V can be used effectively for crop identification mapping by utilizing spectral matching techniques and phenological characteristics of different crop types. The study sites are agricultural areas spread across the globe, located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine), and Sao Paulo (Brazil). The data are collected for the 2014–2015 season. For each pure pixel within a field, the NDVI profile of the crop type for its growing season is matched with the reference NDVI profile. Three temporal windows are tested within the growing season: green up to senescence, green up to dormancy, and minimum NDVI at the beginning of the growing season to minimum NDVI at the end of the growing season. In order of importance, the crop phenological development period, parcel size, shorter time window, number of ground truth parcels, and crop calendar similarity are the main reasons behind the differences between the results. The methodology described in this chapter demonstrates the potentials and limitations of using 100 m PROBA V with revisiting frequency every 5 days in crop identification across different regions of the world. The final chapter explores the trade off between the different spatial resolutions provided by PROBA V products versus the temporal frequency and, additionally, explores the use of thermal time to improve statistical yield estimations. The ground data are winter wheat yields at the field level for 39 fields across Northern France during one growing season 2014–2015. An asymmetric double sigmoid function is fitted, and the NDVI values are integrated over thermal time and over calendar time for the central pixel of the field, exploring different thresholds to mark the start and end of the cropping season. The integrated NDVI values with different NDVI thresholds are used as a proxy for yield. In addition, a pixel purity analysis is performed for different purity thresholds at the 100 m, 300 m, and 1 km resolutions. The findings demonstrate that while estimating winter wheat yields at the field level with pure pixels from PROBA V products, the best correlation is obtained with a 100 m resolution product. However, several fields must be omitted due to the lack of observations throughout the growing season with the 100 m resolution dataset, as this product has a lower temporal resolution compared to 300 m and 1 km. This thesis is a modest contribution to the remote sensing and data analysis field with its own merits, in particular with respect to PROBA V. The experiments provide interesting insight into the PROBA V dataset at 1 km, 300 m, and 100 m resolutions. Specifically, the results show that 100 m spatial resolution imagery could be used effectively and advantageously in agricultural crop monitoring and crop identification at local – field level – and regional – the administrative regions defined by the national governments – levels. Furthermore, this thesis discusses the limitations of using a low resolution satellite, such as the PROBA V 100 m dataset, in crop monitoring and identification. Also, several recommendations are made for space agencies that can be used when designing the new generation of satellites. [less ▲]

Detailed reference viewed: 188 (26 ULiège)